首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   34篇
  612篇
  2023年   5篇
  2022年   11篇
  2021年   16篇
  2020年   16篇
  2019年   12篇
  2018年   23篇
  2017年   13篇
  2016年   26篇
  2015年   42篇
  2014年   40篇
  2013年   46篇
  2012年   59篇
  2011年   51篇
  2010年   24篇
  2009年   14篇
  2008年   24篇
  2007年   34篇
  2006年   16篇
  2005年   9篇
  2004年   12篇
  2003年   14篇
  2002年   9篇
  2001年   8篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   5篇
  1983年   2篇
  1981年   5篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1976年   3篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1970年   3篇
  1968年   2篇
  1967年   2篇
  1966年   4篇
排序方式: 共有612条查询结果,搜索用时 15 毫秒
51.
52.
The giant extracellular hemoglobin (erythrocruorin) from the earth worm (Lumbricus terrestris) has shown promise as a potential hemoglobin-based oxygen carrier (HBOC) in in vivo animal studies. An important beneficial characteristic of this hemoglobin (LtHb) is the large number of heme-based oxygen transport sites that helps overcome issues of osmotic stress when attempting to provide enough material for efficient oxygen delivery. A potentially important additional property is the capacity of the HBOC either to generate nitric oxide (NO) or to preserve NO bioactivity to compensate for decreased levels of NO in the circulation. The present study compares the NO-generating and NO bioactivity-preserving capability of LtHb with that of human adult hemoglobin (HbA) through several reactions including the nitrite reductase, reductive nitrosylation, and still controversial nitrite anhydrase reactions. An assignment of a heme-bound dinitrogen trioxide as the stable intermediate associated with the nitrite anhydrase reaction in both LtHb and HbA is supported based on functional and EPR spectroscopic studies. The role of the redox potential as a factor contributing to the NO-generating activity of these two proteins is evaluated. The results show that LtHb undergoes the same reactions as HbA and that the reduced efficacy for these reactions for LtHb relative to HbA is consistent with the much higher redox potential of LtHb. Evidence of functional heterogeneity in LtHb is explained in terms of the large difference in the redox potential of the isolated subunits.  相似文献   
53.
Both components of chromatin (DNA and histones) are subjected to dynamic postsynthetic covalent modifications. Dynamic histone lysine methylation involves the activities of modifying enzymes (writers), enzymes removing modifications (erasers), and readers of the epigenetic code. Known histone lysine demethylases include flavin-dependent monoamine oxidase lysine-specific demethylase 1 and α-ketoglutarate-Fe(II)-dependent dioxygenases containing Jumonji domains. Importantly, the Jumonji domain often associates with at least one additional recognizable domain (reader) within the same polypeptide that detects the methylation status of histones and/or DNA. Here, we summarize recent developments in characterizing structural and functional properties of various histone lysine demethylases, with emphasis on a mechanism of crosstalk between a Jumonji domain and its associated reader module(s). We further discuss the role of recently identified Tet1 enzyme in oxidizing 5-methylcytosine to 5-hydroxymethylcytosine in DNA.  相似文献   
54.
BaSO(4) activated with various concentrations of Eu were prepared by solid-state reaction technique. Thermoluminescence (TL) and mechanoluminescence (ML) of γ-ray-irradiated BaSO(4):Eu(2)O(3) phosphors were recorded. In the TL glow curve of the phosphor a single peak at 170°C was observed. The TL of the phosphors were also recorded after deforming the phosphors by dropping a piston of mass 0.4 kg onto them with different impact velocities. TL intensity (after deformation) decreased with increasing the impact velocity. In the ML intensity vs time curve two peaks were observed. ML intensity increased with increasing impact velocity of the piston and the time corresponding to peak ML intensity shifted to a shorter time value. ML intensity decreased drastically when it was recorded after annealing the sample at 170°C. The BaSO(4) phosphors activated with 0.1 mol% of Eu(2)O(3) showed optimum TL and ML. The photoluminescence emission spectrum of the sample showed that Eu enters as Eu(2+) ion in host lattice.  相似文献   
55.
56.
57.
Abstract Artemisia annua (Asteraceae) is well known for its antimalarial activities due to presence of the compound artemisinin. We isolated a methoxy coumarin from the stem part of A. annua and confirmed its identity as scopoletin through mass spectral data. The structure was established from 1H‐nuclear magnetic resonance (NMR), 13C‐NMR. The compound scopoletin was evaluated for its feeding deterrence and growth inhibitory potential against a noxious lepidopteran insect, Spilartctia obliqua Walker. Scopoletin gave FD50 (feeding deterrence of 50%) value of 96.7 μg/g diet when mixed into artificial diet. S. obliqua larvae (12‐day‐old) exposed to the highest concentration (250 μg/g diet) of scopoletin showed 77.1% feeding‐deterrence. In a growth inhibitory assay, scopoletin provided 116.9% growth inhibition at the highest dose of 250 μg/g diet with a GI50 (growth inhibition of 50%) value of 20.9 μg/g diet. Statistical analysis showed a concentration‐dependent dose response relationship toward both feeding deterrent and growth inhibitory activities. Artemisinin is found mainly in the leaves of A. annua and not in the stems, which are typically discarded as waste. Therefore identification of scopoletin in stems of A. annua may be important as a source of this material for pest control.  相似文献   
58.
Actin plays multiple complex roles in cell growth and cell shape. Recently it was demonstrated that actin patches, which represent sites of endocytosis, are present in a sub-apical collar at growing tips of hyphae and germ tubes of filamentous fungi. It is now clear that this zone of endocytosis is necessary for filamentous growth to proceed. In this review evidence for the role of these endocytic sites in hyphal growth is examined. One possibility if that the role of the sub-apical collar is associated with endocytic recycling of polarized material at the hyphal tip. The 'Apical Recycling Model' accounts for this role and predicts the need for a balance between endocytosis and exocytosis at the hyphal tip to control growth and cell shape. Other cell differentiation events, including appressorium formation and Aspergillus conidiophore development may also be explained by this model.  相似文献   
59.

Background

The integrated functions of 11 Ser/Thr protein kinases (STPKs) and one phosphatase manipulate the phosphorylation levels of critical proteins in Mycobacterium tuberculosis. In this study, we show that the lone Ser/Thr phosphatase (PstP) is regulated through phosphorylation by STPKs.

Principal Findings

PstP is phosphorylated by PknA and PknB and phosphorylation is influenced by the presence of Zn2+-ions and inorganic phosphate (Pi). PstP is differentially phosphorylated on the cytosolic domain with Thr137, Thr141, Thr174 and Thr290 being the target residues of PknB while Thr137 and Thr174 are phosphorylated by PknA. The Mn2+-ion binding residues Asp38 and Asp229 are critical for the optimal activity of PstP and substitution of these residues affects its phosphorylation status. Native PstP and its phosphatase deficient mutant PstPc D38G are phosphorylated by PknA and PknB in E. coli and addition of Zn2+/Pi in the culture conditions affect the phosphorylation level of PstP. Interestingly, the phosphorylated phosphatase is more active than its unphosphorylated equivalent.

Conclusions and Significance

This study establishes the novel mechanisms for regulation of mycobacterial Ser/Thr phosphatase. The results indicate that STPKs and PstP may regulate the signaling through mutually dependent mechanisms. Consequently, PstP phosphorylation may play a critical role in regulating its own activity. Since, the equilibrium between phosphorylated and non-phosphorylated states of mycobacterial proteins is still unexplained, understanding the regulation of PstP may help in deciphering the signal transduction pathways mediated by STPKs and the reversibility of the phenomena.  相似文献   
60.

Background

Role of immune system in protecting the host from cancer is well established. Growing cancer however subverts immune response towards Th2 type and escape from antitumor mechanism of the host. Activation of both innate and Th1 type response is crucial for host antitumor activity. In our previous study it was found, that Mycobacterium indicus pranii (MIP) also known as M. w induces Th1 type response and activates macrophages in animal model of tuberculosis. Hence, we studied the immunotherapeutic potential of MIP in mouse tumor model and the underlying mechanisms for its antitumor activity.

Methodology and Principal Findings

Tumors were implanted by injecting B16F10 melanoma cells subcutaneously into C57BL/6 mice. Using the optimized dose and treatment regimes, anti-tumor efficacy of heat killed MIP was evaluated. In MIP treated group, tumor appeared in only 50–60% of mice, tumor growth was delayed and tumor volume was less as compared to control. MIP mediated immune activation was analysed in the tumor microenvironment, tumor draining lymph node and spleen. Induction of Th1 response and higher infiltration of immune cells in the tumor microenvironment was observed in MIP treated mice. A large fraction of these immune cells were in activated state as confirmed by phenotypic and functional analysis. Interestingly, percentage of Treg cells in the tumor milieu of treated mice was less. We also evaluated efficacy of MIP along with chemotherapy and found a better response as compared to chemotherapy alone.

Conclusion

MIP therapy is effective in protecting mice from tumor. It activates the immune cells, increases their infiltration in tumor, and abrogates tumor mediated immune suppression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号