首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8530篇
  免费   788篇
  国内免费   2篇
  2023年   43篇
  2022年   87篇
  2021年   189篇
  2020年   119篇
  2019年   138篇
  2018年   178篇
  2017年   182篇
  2016年   226篇
  2015年   433篇
  2014年   479篇
  2013年   619篇
  2012年   764篇
  2011年   736篇
  2010年   457篇
  2009年   425篇
  2008年   587篇
  2007年   535篇
  2006年   518篇
  2005年   460篇
  2004年   483篇
  2003年   355篇
  2002年   392篇
  2001年   101篇
  2000年   59篇
  1999年   91篇
  1998年   92篇
  1997年   56篇
  1996年   31篇
  1995年   30篇
  1994年   29篇
  1993年   39篇
  1992年   30篇
  1991年   32篇
  1990年   29篇
  1989年   27篇
  1988年   16篇
  1987年   18篇
  1986年   16篇
  1985年   14篇
  1984年   20篇
  1983年   14篇
  1982年   16篇
  1981年   13篇
  1980年   12篇
  1979年   13篇
  1978年   15篇
  1977年   12篇
  1975年   7篇
  1973年   13篇
  1972年   7篇
排序方式: 共有9320条查询结果,搜索用时 15 毫秒
31.
The purpose of these studies was to measure circulating gastrin and somatostatin concentrations during sham feeding in humans and to evaluate the effect of two doses of intravenous atropine on circulating concentrations of these peptides. Gastric acid and bicarbonate secretion and pulse rate were also measured. Sham feeding increased plasma gastrin concentrations by approximately 15 pg/ml but had no effect on plasma somatostatin-like immunoreactivity (SLI). A small dose of atropine (5 micrograms/kg) augmented plasma gastrin concentrations during sham feeding significantly (P less than 0.01), but did not affect plasma SLI. Atropine also significantly inhibited gastric acid secretion and gastric bicarbonate secretion (by 62% and 52%, respectively), but pulse rate was not affected. A larger dose of atropine (15 micrograms/kg intravenously) suppressed plasma gastrin concentrations significantly compared to the smaller 5 micrograms/kg atropine dose (P less than 0.02), so that plasma gastrin concentrations when 15 micrograms/kg atropine was given were not significantly different from those during the control study. 15 micrograms/kg atropine reduced gastric acid and bicarbonate secretion by 81% and 66%, respectively, and also increased pulse rate by 15 min-1. These studies indicate that small doses of atropine enhance vagally mediated gastrin release in humans, probably by blocking a cholinergic inhibitory pathway for gastrin release. Although the nature of this cholinergic inhibitory mechanism is unclear, we found no evidence to incriminate somatostatin. Our finding that the larger dose of atropine reduced serum gastrin concentrations compared with the smaller dose suggests that certain vagal-cholinergic pathways may facilitate gastrin release.  相似文献   
32.
33.
We report here on the extraction and characterization of angiotensin I (ANG I) and angiotensin II (ANG II) from the brain of rats. High pressure liquid chromatography (HPLC) with different mobile phases combined with specific radioimmunoassays (RIA) proved to be a powerful tool for peptide characterization in biological samples; (Ile5)-ANG I, (Ile5)-ANG II and (Ile5)-ANG III could clearly be identified in cerebrospinal fluid (CSF), incubated in vivo and in vitro with renin, in total brain extracts, as well as in hypothalamus (HT), medulla oblongata (MO), cerebellum (CER) and cortex (CO). Angiotensin cleaved from CSF angiotensinogen and angiotensin extracted from brain showed retention times identical to those of plasma angiotensin and synthetic standard peptides, indicating that their amino acid sequence is probably identical. ANG I and ANG II were highest in the HT and lowest in the CO. Following bilateral nephrectomy (NX) both ANG I and ANG II persisted at control levels. Young 10 week old spontaneously hypertensive rats (SHRSP) showed significantly lower ANG I and ANG II concentrations in the HT compared with Wistar Kyoto rats (WKY). Intracerebroventricular (i.c.v.) administration of the converting enzyme inhibitor captopril caused a significant increase in ANG 1 in nephrectomized SHRSP but not in WKY. These differences were not found in 40 week old SHRSP. The data show that ANG I and ANG II are synthetized in the brain of rats. The lower concentrations and the enhanced accumulation of ANG I after converting enzyme blockade in nephrectomized young SHRSP indicate an increased turnover of angiotensin in hypertensive rats.  相似文献   
34.
Summary Studies of the diel feeding patterns of the planktivorous fish, Xenomelaniris venezuelae, in Lake Valencia, Venezuela, revealed that, although the fish is primarily a diurnal feeder, it consumes substantial numbers of Chaoborus larvae and pupae at night. A number of fish species are known which feed on plankton at night, but these fish are filter feeders and their diets largely consist of relatively small, nonevasive prey. Chaoborus, however, is large and agile. Predation by Xenomelaniris in the dark was also studied experimentally. Captured fish were placed in completely darkened aquaria with zooplankton from Lake Valencia. After several hours the plankton was removed and examined for evidence of feeding. The fish were found to consume Chaoborus pupae and fourth instar larvae but not other types of prey. The mode of feeding by Xenomelaniris in the dark is unknown.  相似文献   
35.
The morphological relationship between sensory and sympathetic nerves was studied in tissues of the eye and the oral cavity following chronic sympathetic or sensory denervation. Immunoreactivities for calcitonin gene-related peptide (CGRP) and tyrosine hydroxylase (TH) were used as indexes to assess the changes of the two nerve populations after denervation. Following surgical sympathectomy, a marked increase of CGRP-containing fibres was seen in all tissues studied, while TH-imunoreactive fibres were totally depleated. Conversely, after capsaicin treatment, an increase of TH-immunoreactive nerves was found in the same tissues, concomitant with a sharp decrease of CGRP-immunoreactive nerves. These changes were particularly evident in iridial stroma and around blood vessels in all tissue, where sensory and sympathetic nerves have a closely overlapping distribution pattern. The altered proportion of sensory peptide- and catecholamine-containing nerves following sympathetic and sensory denervation suggest that there is a reciprocal trophic influence between the two nerve subsets, possibly with the intervention of neurotrophic substances such as nerve growth factor. These results indicate a close interaction between sensory peptidergic and sympathetic nervous systems in peripheral organs.  相似文献   
36.
37.
38.
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号