首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   20篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   9篇
  2014年   13篇
  2013年   15篇
  2012年   12篇
  2011年   20篇
  2010年   18篇
  2009年   6篇
  2008年   12篇
  2007年   15篇
  2006年   14篇
  2005年   9篇
  2004年   10篇
  2003年   5篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1994年   3篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1983年   1篇
排序方式: 共有217条查询结果,搜索用时 31 毫秒
31.
Ung MU  Lu B  McCammon JA 《Biopolymers》2006,81(6):428-439
The active site of the mammalian cAMP-dependent protein kinase catalytic subunit (C-subunit) has a cluster of nonconserved acidic residues-Glu127, Glu170, Glu203, Glu230, and Asp241-that are crucial for substrate recognition and binding. Studies have shown that the Glu230 to Gln mutant (E230Q) of the enzyme has physical properties similar to the wild-type enzyme and has decreased affinity for a short peptide substrate, Kemptide. However, recent experiments intended to crystallize ternary complex of the E230Q mutant with MgATP and protein kinase inhibitor (PKI) could only obtain crystals of the apo-enzyme of E230Q mutant. To deduce the possible mechanism that prevented ternary complex formation, we used the relaxed-complex method (Lin, J.-H., et al. J Am Chem Soc 2002, 24, 5632-5633) to study PKI binding to the E230Q mutant C-subunit. In the E230Q mutant, we observed local structural changes of the peptide binding site that correlated closely to the reduced PKI affinity. The structural changes occurred in the F-to-G helix loop and appeared to hinder PKI binding. Reduced electrostatic potential repulsion among Asp241 from the helix loop section and the other acidic residues in the peptide binding site appear to be responsible for the structural change.  相似文献   
32.
Paenibacillus spp. are Gram-positive, facultatively aerobic, bacilli-shaped endospore-forming bacteria. They have been detected in a variety of environments, such as soil, water, forage, insect larvae, and even clinical samples. The strain 139SI (GenBank accession No.: JF825470.1) from three strains of Paenibacillus isolates investigated here was chosen as the type strain of the proposed novel species. The other two similar strain isolates investigated were 140SI (JF825471.1) and 141SI (JQ734548.1). These strains were identified as members of the genus Paenibacillus on the basis of phenotypic characteristics, phylogenetic analysis and 16S rRNA G+C content. Surprisingly, these strains exhibited a strong hemolytic activity on 5% sheep blood agar. Their crude extracts also showed positive growth-promoting activities in colon cancer and Vero cell lines. To our knowledge, this is the first Paenibacillus with hemolytic and growth-promoting activities reported, and the name Paenibacillus hemolyticus for this novel species is proposed. The capability of this novel species in hemolytic and cell growth activities suggests its potential in both clinical and pharmacological implications.  相似文献   
33.
Nitric oxide (NO) is a key signaling molecule in plants. This analysis of Arabidopsis thaliana HOT5 (sensitive to hot temperatures), which is required for thermotolerance, uncovers a role of NO in thermotolerance and plant development. HOT5 encodes S-nitrosoglutathione reductase (GSNOR), which metabolizes the NO adduct S-nitrosoglutathione. Two hot5 missense alleles and two T-DNA insertion, protein null alleles were characterized. The missense alleles cannot acclimate to heat as dark-grown seedlings but grow normally and can heat-acclimate in the light. The null alleles cannot heat-acclimate as light-grown plants and have other phenotypes, including failure to grow on nutrient plates, increased reproductive shoots, and reduced fertility. The fertility defect of hot5 is due to both reduced stamen elongation and male and female fertilization defects. The hot5 null alleles show increased nitrate and nitroso species levels, and the heat sensitivity of both missense and null alleles is associated with increased NO species. Heat sensitivity is enhanced in wild-type and mutant plants by NO donors, and the heat sensitivity of hot5 mutants can be rescued by an NO scavenger. An NO-overproducing mutant is also defective in thermotolerance. Together, our results expand the importance of GSNOR-regulated NO homeostasis to abiotic stress and plant development.  相似文献   
34.
Spinal cord injury (SCI) is a neurological condition, for which no cure exists, typically leading to an immediate and irreversible loss of sensory and voluntary motor functions accompanied by significant health problems. We conducted proof-of-concept experiments aimed at assessing efficacy upon oral administration of a novel combination therapy for central pattern generator (CPG) activation and corresponding locomotor movement generation in completely paraplegic animals. Co-administration orally (by gavage) of buspirone, levodopa and carbidopa was found to dose-dependently induce episodes of steady weight-bearing stepping in low-thoracic (Th9/10) spinal cord-transected (Tx) mice (with no other form of assistance or training). Robust hindlimb stepping with weight-bearing capabilities was induced with the tri-therapy but not with clinically relevant doses of these compounds administered separately. These results provide evidence suggesting that this drug combination may be ideally suited to constitute a first-in-class therapy (CPG activator) for locomotor activity induction in chronic SCI individuals, given that efficacy was shown using commercially available brain-permeable small molecules, already known as safe for the treatment of various neurological indications.  相似文献   
35.
36.
Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip) of T lymphotropic Herpesvirus saimiri (HVS) is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip''s transmembrane (TM) domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip''s lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.  相似文献   
37.

Background  

Discovery of new medicinal agents from natural sources has largely been an adventitious process based on screening of plant and microbial extracts combined with bioassay-guided identification and natural product structure elucidation. Increasingly rapid and more cost-effective genome sequencing technologies coupled with advanced computational power have converged to transform this trend toward a more rational and predictive pursuit.  相似文献   
38.
Post-translational modifications of proteins are known to be important in protein activity and ERalpha is known to be phosphorylated at multiple sites within the protein. The exact function of site-specific phosphorylation in ERalpha is unknown, although several hypotheses have been developed using site-directed mutagenesis and cell culture models. Targeting the ERalpha at the level of such post-translational modification pathways would be a new and exciting approach to endocrine therapy in breast cancer, but adequate knowledge is lacking with regard to the relevance of site-specific phosphorylation in ERalpha in human breast cancer in vivo. Recently, antibodies to P-Serine(118)-ERalpha and P-Serine(167)-ERalpha, two major sites of phosphorylation in ERalpha, have become available and some in vivo data are now available to complement studies in cells in culture. However, the in vivo data are somewhat contradictory and limited by the small cohorts used and the lack of standard well-characterized reagents and protocols.  相似文献   
39.
Osteoblasts not only control bone formation but also support osteoclast differentiation. Here we show the involvement of Kruppel-like factor 4 (KLF4) in the differentiation of osteoclasts and osteoblasts. KLF4 was down-regulated by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) in osteoblasts. Overexpression of KLF4 in osteoblasts attenuated 1,25(OH)2D3-induced osteoclast differentiation in co-culture of mouse bone marrow cells and osteoblasts through the down-regulation of receptor activator of nuclear factor κB ligand (RANKL) expression. Direct binding of KLF4 to the RANKL promoter repressed 1,25(OH)2D3-induced RANKL expression by preventing vitamin D receptor from binding to the RANKL promoter region. In contrast, ectopic overexpression of KLF4 in osteoblasts attenuated osteoblast differentiation and mineralization. KLF4 interacted directly with Runx2 and inhibited the expression of its target genes. Moreover, mice with conditional knockout of KLF4 in osteoblasts showed markedly increased bone mass caused by enhanced bone formation despite increased osteoclast activity. Thus, our data suggest that KLF4 controls bone homeostasis by negatively regulating both osteoclast and osteoblast differentiation.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号