首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   178篇
  免费   18篇
  196篇
  2023年   1篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   8篇
  2014年   14篇
  2013年   13篇
  2012年   11篇
  2011年   23篇
  2010年   15篇
  2009年   6篇
  2008年   12篇
  2007年   12篇
  2006年   11篇
  2005年   9篇
  2004年   9篇
  2003年   4篇
  2002年   6篇
  2001年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1994年   3篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
排序方式: 共有196条查询结果,搜索用时 15 毫秒
51.
Protease inhibitor 6 (PI-6/SERPINB6) is a widely expressed nucleocytoplasmic serpin. It inhibits granulocyte cathepsin G and neuronal neuropsin, and it is thought to protect cells from death caused by ectopic release or internalization of protease during stress such as infection or cerebral ischemia. To probe the biological functions of PI-6, we generated mice lacking its ortholog (SPI3/Serpinb6). SPI3-deficient mice developed normally and were fertile, and no abnormal pathology or increased sensitivity to cerebral ischemia was observed. There were no perturbations in leukocyte development or numbers, and recruitment of leukocytes to the peritoneal cavity was normal. SPI3-deficient mice were equally susceptible as wild-type mice to systemic Candida albicans infection, although there was a slight decrease in the ability of neutrophils from SPI3-deficient mice to kill C. albicans in vitro. Increased levels of a related inhibitor Serpinb1 (monocyte/neutrophil elastase inhibitor) in the tissues of targeted mice suggests that compensation by other serpins reduces the impact of SPI3 deficiency in these animals and may explain the lack of a more obvious phenotype.  相似文献   
52.
53.
Changes in plasma membrane electrical potential evoke signals that regulate the expressions of various genes in the nervous system. However, the role of glycogen synthase kinase 3beta (GSK-3beta) in this process has not been elucidated. Thus, this study was performed to examine whether membrane depolarization can regulate the phosphorylation of GSK-3beta and to identify the molecular mechanisms involved in this regulation. The depolarization by treating with 100 mm KCl for 5 min resulted in the undulating phosphorylation of GSK-3beta at Ser-9 in SH-SY5Y human neuroblastoma cells, in H19 -7/IGF-IR rat embryonic hippocampal cells, and in PC12 rat pheochromocytoma cells, but not in A172 human glioblastoma cells. Cellular beta-catenin contents showed a temporal pattern similar to that of the Ser-9 phosphorylation of GSK-3beta. Treatment with wortmannin or calphostin C or the expression of dominant negative Akt inhibited phosphorylation of GSK-3beta at Ser-9 following the KCl-induced depolarization of SH-SY5Y cells. Moreover, pretreatment with okadaic acid or cyclosporin A blocked the dephosphorylation of GSK-3beta at Ser-9 at 0, 15, and 30 min after KCl-induced depolarization, and the activity of protein phosphatases (PP) 2A and 2B increased at these times. Treatment with nifedipine or calcium-free medium inhibited GSK-3beta dephosphorylation following membrane depolarization, and the amounts of co-immunoprecipitated GSK-3beta and PP2A changed in parallel with GSK-3beta dephosphorylation. Our study demonstrated that KCl-induced depolarization caused undulating GSK-3beta phosphorylation/dephosphorylation, which was regulated for the most part by phosphatidylinositol 3-kinase and Akt (phosphorylation) and PP2A and PP2B (dephosphorylation), respectively.  相似文献   
54.
Protein tyrosine kinase-7 (PTK7) is a receptor protein tyrosine kinase (RPTK)-like molecule that contains a catalytically inactive tyrosine kinase domain. We report here the genomic structure of the human PTK7 gene by screening a BAC library and DNA sequencing. The PTK7 gene is organized into 20 exons. All of the splicing junctions followed the conserved GT/AG rule. The exon-intron structure of the PTK7 gene in the region that encodes the catalytic domain was distinct from those of other RPTKs with strong homology. The 5'-flanking sequence of the PTK7 gene contains two GC boxes that concatenate Sp1 binding motifs, but does not contain either the TATA or CAAT consensus sequence. Using a luciferase reporter assay, it was demonstrated that the 883-bp 5'-flanking sequence is functional as a promoter of the PTK7 gene. We identified four new splicing variants in testis that could be derived from alternative splicing of exons 8-10, 10, a part of 12-13, and 16. The expression patterns of the splicing variants in the hepatoma and colon cancer cells were different from those of the testis. Our findings suggest that PTK7 is evolutionarily distinct from other RPTKs, and that the alternative splicing of PTK7 mRNA may contribute to its diverse function in cell signaling.  相似文献   
55.
Structural studies of proteins and protein-ligand complexes by nuclear magnetic resonance (NMR) spectroscopy can be greatly enhanced by site-specific attachment of lanthanide ions to create paramagnetic centers. In particular, pseudocontact shifts (PCS) generated by paramagnetic lanthanides contain important and unique long-range structure information. Here, we present a high-affinity lanthanide binding tag that can be attached to single cysteine residues of proteins. The new tag has many advantageous features that are not available in this combination from previously published tags: (i) it binds lanthanide ions very tightly, minimizing the generation of nonspecific effects, (ii) it produces PCSs with high reliability as its bulkiness prevents complete motional averaging of PCSs, (iii) it can be attached to single cysteine residues, alleviating the need of detailed prior knowledge of the 3D structure of the target protein, and (iv) it does not display conformational exchange phenomena that would increase the number of signals in the NMR spectrum. The performance of the tag is demonstrated with the N-terminal domain of the E. coli arginine repressor and the A28C mutant of human ubiquitin.  相似文献   
56.
Kang SU  Lubec G 《Proteomics》2011,11(3):481-484
Until now quantification of proteins in gel-based methods relies on the amount of protein loaded onto the gel. This does not, however, represent the amount of proteins in the gel and therefore determination of proteins within the gel is mandatory. A method to quantify proteins, both hydrophilic and hydrophobic, using in-gel digestion with proteases, subsequent acid hydrolysis and the use of the ninhydrin reaction is herein presented.  相似文献   
57.
Kim JH  Kim K  Youn BU  Jin HM  Kim JY  Moon JB  Ko A  Seo SB  Lee KY  Kim N 《The Biochemical journal》2011,433(2):253-262
The MTM (myotubularin)/MTMR (myotubularin-related) protein family is comprised of 15 lipid phosphatases, of which nine members are catalytically active. MTMs are known to play a fundamental role in human physiology as gene mutations can give rise to X-linked myotubular myopathy or Charcot-Marie-Tooth disease, which manifest in skeletal muscle or in peripheral neurons respectively. Interestingly, studies have shown MTMR2 and MTMR5, two MTM family members, to be highly expressed in the testis, particularly in Sertoli and germ cells, and knockout of either gene resulted in spermatogenic defects. Other studies have shown that MTMR2 functions in endocytosis and membrane trafficking. In the testis, MTMR2 interacts and co-localizes with c-Src/phospho-Src-(Tyr?1?), a non-receptor protein tyrosine kinase that regulates the phosphorylation state of proteins at the apical ES (ectoplasmic specialization), a unique type of cell junction found between Sertoli cells and elongating/elongated spermatids. In the present review, we highlight recent findings that have made a significant impact on our understanding of this protein family in normal cell function and in disease, with the emphasis on the role of MTMs and MTMRs in spermatogenesis. We also describe a working model to explain how MTMR2 interacts with other proteins such as c-Src, dynamin 2, EPS8 (growth factor receptor pathway substrate 8) and ARP2/3 (actin-related protein 2/3) at the apical ES and the apical TBC (tubulobulbar complex; tubular-like invaginations that function in the disassembly of the apical ES and in the recycling of its components) to regulate spermiation at late stage VIII of the seminiferous epithelial cycle.  相似文献   
58.
Oxidative stress induced neuronal cell death by accumulation of β-amyloid (Aβ) is a critical pathological mechanism of Alzheimer's disease (AD). Intracerebroventrical infusion of Aβ1-42 (300 pmol/day per mouse) for 14 days induced neuronal cell death and memory impairment, but pre-treatment of 4-O-methylhonokiol (4-O-MH), a novel compound extracted from Magnolia officinalis for 3 weeks (0.2, 0.5 and 1.0 mg/kg) prior to the infusion of Aβ1-42 and during the infusion dose dependently improved Aβ1-42-induced memory impairment and prevented neuronal cell death. Additionally, 4-O-MH reduced Aβ1-42 infusion-induced oxidative damages of protein and lipid but reduced glutathione levels in the cortex and hippocampus. Aβ1-42 infusion-induced activation of astrocytes and p38 mitogenic activated protein (MAP) kinase was also prevented by 4-O-MH in mice brains. In further study using culture cortical neurons, p38 MAP kinase inhibitor abolished the inhibitory effect of 4-O-MH (10 μM) on the Aβ1-42 (5 μM)-induced reactive oxidative species generation and neuronal cell death. These results suggest that 4-O-MH might prevent the development and progression of AD through the reduction of oxidative stress and neuronal cell death via inactivation of p38 MAP kinase pathway.  相似文献   
59.
Ung N  Lal S  Smith HM 《Plant physiology》2011,156(2):605-614
Growth of the aerial part of the plant is dependent upon the maintenance of the shoot apical meristem (SAM). A balance between the self-renewing stem cells in the central zone (CZ) and organogenesis in the peripheral zone (PZ) is essential for the integrity, function, and maintenance of the SAM. Understanding how the SAM maintains a balance between stem cell perpetuation and organogenesis is a central question in plant biology. Two related BELL1-like homeodomain proteins, PENNYWISE (PNY) and POUND-FOOLISH (PNF), act to specify floral meristems during reproductive development. However, genetic studies also show that PNY and PNF regulate the maintenance of the SAM. To understand the role of PNY and PNF in meristem maintenance, the expression patterns for genes that specifically localize to the peripheral and central regions of the SAM were examined in Arabidopsis (Arabidopsis thaliana). Results from these experiments indicate that the integrity of the CZ is impaired in pny pnf plants, which alters the balance of stem cell renewal and organogenesis. As a result, pools of CZ cells may be allocated into initiating leaf primordia. Consistent with these results, the integrity of the central region of pny pnf SAMs can be partially restored by increasing the size of the CZ. Interestingly, flower specification is also reestablished by augmenting the size of the SAM in pny pnf plants. Taken together, we propose that PNY and PNF act to restrict organogenesis to the PZ by maintaining a boundary between the CZ and PZ.  相似文献   
60.
To understand the expression pattern of theS RNase gene in the floral tissues associated with self-incompatibility (SI), promoter region of S11 RNase gene was serially deleted and fused GUS. Five chimeric constructs containing a deleted promoter region of the S11 RNase gene were constructed, and introduced intoNicotiana tabacum using Agrobacterium-mediated transformation. Northern blot analysis revealed that the GUS gene was expressed in the style, anther, and developing pollen of all stages in each transgenic tobacco plant The developing pollen expressed the same amount of GUS mRNA in all stages in transgenic tobacco plants. In addition, histochemical analysis showed GUS gene expression in vascular bundle, endothecium, stomium, and tapetum cells during pollen development in transgenic plants. From these results, it is speculated that SI ofLycopersicon peruvianum may occur through the interaction ofS RNase expressed in both style and pollen tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号