首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   2篇
  53篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   2篇
  2007年   2篇
  2006年   5篇
  2005年   3篇
  2003年   3篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1983年   1篇
  1974年   1篇
排序方式: 共有53条查询结果,搜索用时 2 毫秒
51.

Background

Microsatellites are nucleotide sequences of tandem repeats occurring throughout the genome, which have been widely used in genetic linkage analysis, studies of loss of heterozygosity, determination of lineage and clonality, and the measurement of genome instability or the emergence of drug resistance reflective of mismatch repair deficiency. Such analyses may involve the parallel evaluation of many microsatellite loci, which are often limited by sample DNA, are labor intensive, and require large data processing.

Results

To overcome these challenges, we developed a cost-effective high-throughput approach of microsatellite analysis, in which the amplifications of microsatellites are performed in miniaturized, multiplexed polymerase chain reaction (PCR) adaptable to 96 or 384 well plates, and accurate automated allele identification has been optimized with a collective reference dataset of 5,508 alleles using the GeneMapper software.

Conclusions

In this investigation, we have documented our experience with the optimization of multiplex PCR conditions and automated allele identification, and have generated a unique body of data that provide a starting point for a cost-effective, high-throughput process of microsatellite analysis using the studied markers.
  相似文献   
52.
Derangement in pulmonary surfactant or its components and alveolar collapse are common findings in idiopathic pulmonary fibrosis (IPF). Surfactant proteins play important roles in innate host defense and normal function of the lung. We examined associations between IPF and genetic polymorphic variants of surfactant proteins, SP-A1, SP-A2, SP-B, SP-C, and SP-D. One SP-A1 (6A4) allele and single nucleotide polymorphisms (SNPs) that characterize the 6A4 allele, and one SP-B (B1580_C) were found with higher frequency (P0.01) in nonsmoker and smoker IPF (n=84) subgroups, respectively, compared with healthy controls (n=194). To explore whether a tryptophan (present in 6A4) or an arginine (present in other SP-A1 alleles and in all SP-A2 alleles) at amino acid 219 alters protein behavior, two truncated proteins that varied only at amino acid 219 were oxidized by exposure to ozone. Differences in the absorption spectra (310–350 nm) between the two truncated recombinant SP-A proteins were observed both before and after protein oxidation, suggesting allele-specific aggregation differences attributable to amino acid 219. The SP-B SNP B1580_C (odds ratio:7.63; confidence interval:1.64–35.4; P0.01), to be a risk factor for IPF smokers, has also been shown to be a risk factor for other pulmonary diseases. The SP-C and SP-D SNPs and SP-B-linked microsatellite markers studied did not associate with IPF. These findings indicate that surfactant protein variants may serve as markers to identify subgroups of patients at risk, and we speculate that these contribute to IPF pathogenesis.  相似文献   
53.
The incidence and severity of many lung diseases change with age. Some diseases, such as pneumonia, occur with increased frequency in children and the elderly. Proteins obtained by bronchoalveolar lavage (BAL) serve as the first line of defense against inhaled toxins and pathogens. Age-related changes in BAL protein expression and oxidative modification were examined in juvenile (1 mo), young adult (2 mo), and aged (18 mo) F344 rats using two-dimensional difference gel electrophoresis (2D-DIGE), matrix-assisted laser desorption ionization-time of flight/time of flight (MALDI-ToF/ToF) tandem mass spectrometry, and carbonyl immunoblotting. Using 2D-DIGE, we detected 563 protein spots, and MALDI-ToF/ToF identified 204 spots comprising 31 proteins; 21 changed significantly (17 increases) between juvenile and young adult or aged rats, but for 12 of these proteins, levels had a biphasic pattern, and levels in aged rats were less than in young adults. Relative carbonylation was determined by comparison of immunostaining with total protein staining on each oxidized protein blot. We found that aged rats had significantly increased oxidation in 13 proteins compared with juvenile rats. Many of the proteins altered in expression or oxidation level had functions in host defense, redox regulation, and protein metabolism. We speculate that low levels of expression of host defense proteins in juvenile rats and decreases in levels of these proteins between young adult and aged rats may predispose these groups to pneumonia. In addition, we have shown age-related increases in protein oxidation that may compromise host defense function in aged rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号