首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1019篇
  免费   44篇
  1063篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   15篇
  2020年   2篇
  2019年   9篇
  2018年   16篇
  2017年   11篇
  2016年   24篇
  2015年   32篇
  2014年   46篇
  2013年   62篇
  2012年   70篇
  2011年   74篇
  2010年   50篇
  2009年   44篇
  2008年   71篇
  2007年   73篇
  2006年   89篇
  2005年   57篇
  2004年   68篇
  2003年   47篇
  2002年   54篇
  2001年   9篇
  2000年   8篇
  1999年   13篇
  1998年   16篇
  1997年   9篇
  1996年   9篇
  1995年   17篇
  1994年   4篇
  1993年   12篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1974年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有1063条查询结果,搜索用时 15 毫秒
61.
Promyelocytic leukemia (PML) nuclear bodies (PML-NBs) are the nuclear structure consisting of various proteins such as PML, SUMO-1, and p53. PML-NBs are implicated in the regulation of tumor suppression, antiviral responses, and apoptosis. In this study, we searched for bioactive metabolites that would promote the formation of PML-NBs in tumor cells. As a result, methyl 2,5-dihydromethylcinnimate (2,5-MeC), a tyrosine kinase inhibitor, enhanced expression and/or stability of PML proteins and induced PML-NB formation in p53 null H1299 cells established from non-small cell lung cancer (NSCLC) and wild-type p53-expressing U2OS cells derived from osteosarcoma. Furthermore, it enhanced apoptosis by exogenously expressed wild type p53 and the expression of p53-responsive genes, such as PUMA and p21, in H1299 cells. 2,5-MeC also activated endogenous p53 and induced apoptosis in U2OS cells. The results suggest that 2,5-MeC is likely to be a promising candidate drug for the clinical treatment of terminal cancer-expressing wild-type p53.  相似文献   
62.
IL‐17 is a proinflammatory cytokine crucial for osteoclastic bone resorption in the presence of osteoblasts or synoviocytes in rheumatoid arthritis. However, the role of IL‐17 in osteoclastogenesis from human monocytes alone remains unclear. Here, we investigated the role of IL‐17 in osteoclastogenesis from human monocytes alone and the direct effect of infliximab on the osteoclastogenesis induced by IL‐17. Human peripheral blood mononuclear cells (PBMC) were cultured for 3 days with M‐CSF. After non‐adherent cells were removed, IL‐17 was added with either infliximab or osteoprotegerin (OPG). Seven days later, adherent cells were stained for vitronectin receptor. On the other hand, CD11b‐positive monocytes purified from PBMC were also cultured and stained as described above. CD11b‐positive cells were cultured with TNF‐α and receptor activator of NF‐κB ligand (RANKL). In the cultures of both adherent cells and CD11b‐positive cells, IL‐17 dose‐dependently induced osteoclastogenesis in the absence of soluble‐RANKL. OPG or infliximab inhibited IL‐17‐induced osteoclastogenesis. Interestingly, in the culture of CD11b‐positive cells, the osteoclastogenesis was more potently inhibited by infliximab than by OPG. TNF‐α and RANKL synergistically induced osteoclastogenesis. The present study clearly demonstrated the novel mechanism by which IL‐17 directly induces osteoclastogenesis from human monocytes alone. In addition, infliximab potently inhibits the osteoclastogenesis directly induced by IL‐17. J. Cell. Biochem. 108: 947–955, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
63.
64.
65.
Nucleotide sugars are the donor substrates of various glycosyltransferases, and an important building block in N- and O-glycan biosynthesis. Their intercellular concentrations are regulated by cellular metabolic states including diseases such as cancer and diabetes. To investigate the fate of UDP-GlcNAc, we developed a tracing method for UDP-GlcNAc synthesis and use, and GlcNAc utilization using 13C6-glucose and 13C2-glucosamine, respectively, followed by the analysis of mass isotopomers using LC-MS.Metabolic labeling of cultured cells with 13C6-glucose and the analysis of isotopomers of UDP-HexNAc (UDP-GlcNAc plus UDP-GalNAc) and CMP-NeuAc revealed the relative contributions of metabolic pathways leading to UDP-GlcNAc synthesis and use. In pancreatic insulinoma cells, the labeling efficiency of a 13C6-glucose motif in CMP-NeuAc was lower compared with that in hepatoma cells.Using 13C2-glucosamine, the diversity of the labeling efficiency was observed in each sugar residue of N- and O-glycans on the basis of isotopomer analysis. In the insulinoma cells, the low labeling efficiencies were found for sialic acids as well as tri- and tetra-sialo N-glycans, whereas asialo N-glycans were found to be abundant. Essentially no significant difference in secreted hyaluronic acids was found among hepatoma and insulinoma cell lines. This indicates that metabolic flows are responsible for the low sialylation in the insulinoma cells. Our strategy should be useful for systematically tracing each stage of cellular GlcNAc metabolism.Protein glycosylation, which is the most abundant post-translational modification, has important roles in many biological processes by modulating conformation and stability, whereas its dysregulation is associated with various diseases such as diabetes and cancer (1, 2). Glycosylation is regulated by various factors including glucose metabolism, the availability and localization of nucleotide sugars, and the expression and localization of glycosyltransferases (3, 4). Thus, ideally all of these components should be considered when detecting changes in a dynamic fashion; namely, it is necessary not only to take a snapshot but also to make movies of the dynamic changes in glycan metabolism.Glucose is used by living cells as an energy source via the glycolytic pathway as well as a carbon source for various metabolites including nucleotide sugars (e.g. UDP-GlcNAc and CMP-NeuAc). These nucleotide sugars are transported into the Golgi apparatus, and added to various glycans on proteins. UDP-GlcNAc is the donor substrate for N-acetylglucosaminyl (GlcNAc)1 transferases; alternatively, it is used in the cytosol for O-GlcNAc modification (i.e. O-GlcNAcylation) of intracellular proteins (5). The UDP-GlcNAc synthetic pathway is complex as it is a converging point of glucose, nucleotide, fatty acid and amino acid metabolic pathways. Thus, the metabolic flow of glucose modulates the branching patterns of N-glycans via UDP-GlcNAc concentrations because many of the key GlcNAc transferases that determine the branching patterns have widely different Km values for UDP-GlcNAc ranging from 0.04 mm to 11 mm (6, 7). Indeed, it was demonstrated that the branching formation of N-glycans in T cells is stimulated by the supply from the hexosamine pathway, whereby it regulates autoimmune reactions promoted by T cells (8).UDP-GlcNAc is also used for the synthesis of CMP-NeuAc, the donor substrate for sialyltransferases (9). The CMP-NeuAc concentration is controlled by the feedback inhibition of UDP-GlcNAc epimerase/ManNAc kinase by the final product CMP-NeuAc, and hence a high CMP-NeuAc level reduces metabolic flow in CMP-NeuAc de novo synthesis (10). However, there is still only limited information about how the levels of nucleotide sugars dynamically change in response to the environmental cues, and how such changes are reflected in the glycosylation of proteins.Stable isotope labeling is a promising approach to quantify metabolic changes in response to external cues (11, 12). For example, the use of nuclear magnetic resonance to obtain isotopomer signals of metabolically labeled molecules has been applied to trace the flux in glycolysis and fatty acid metabolism (13). An approach based on the mass isotopomers of labeled metabolites with 13C6-glucose has been developed to monitor the UDP-GlcNAc synthetic pathway (1315). The method based on the labeling ratio of each metabolite related to UDP-GlcNAc synthesis has clarified the contribution of each metabolic pathway (14). Moseley reported a novel deconvolution method for modeling UDP-GlcNAc mass isotopomers (15).Previous studies into the use of nucleotide sugars in glycosylation have relied on the specific detection of metabolically radiolabeled glycans (16). It is possible not only to deduce the glycan structures but also to trace their relative contributions to glycan synthesis without MS. On the other hand, mass isotopomer analysis of glycans labeled with stable isotope provides the ratios of labeled versus unlabeled molecules from MS spectra and structural details of the glycans. However, there are only a limited number of publications reporting the application of stable isotope labeling of glycans for monitoring the dynamics of glycans (17). To date, there have been no reports describing a systematic method for tracing cellular GlcNAc biosynthesis and use based on mass isotopomer analysis.The aim of this study was to extend our knowledge of the synthesis and metabolism of UDP-GlcNAc as well as its use in the synthesis of CMP-NeuAc, N- and O-glycans. We recently developed a conventional HPLC method for simultaneous determination of nucleotide sugars including unstable CMP-NeuAc (18). We first established an LC-MS method for isotopomer analysis of 13C6-glucose labeled nucleotide sugars for tracing UDP-GlcNAc metabolism from synthesis to use, because previous methods were not suitable for estimating UDP-GlcNAc use in CMP-NeuAc de novo synthesis (15). We also established a method for isotopomer analysis of labeled N- and O-glycan to monitor the metabolic flow of hexosamine into glycans. Using these two methods, we demonstrated the differences in the use of hexosamines between hepatoma and pancreatic insulinoma cell lines. Our approach may be useful for identifying a metabolic “bottleneck” that governs the turnover speed and patterns of cellular glycosylation, which may be relevant for various applications including glycoprotein engineering and discovery of disease biomarkers.  相似文献   
66.
We obtained strains with the xylanase regulator gene, xlnR, overexpressed (HXlnR) and disrupted (DXlnR) derived from Talaromyces cellulolyticus strain C-1, which is a cellulase hyperproducing mutant. Filter paper degrading enzyme activity and cellobiohydrolase I gene expression was the highest in HXlnR, followed by C-1 and DXlnR. These results indicate that the enhancement of cellulase productivity was succeeded by xlnR overexpression.  相似文献   
67.
To date, the epigenetic events involved in the progression of colorectal cancer are not well described. To study, in detail, methylation during colorectal cancer development in high-risk adenomas, we developed an assay combining in situ (on-slide) sodium bisulfite modification (SBM) of paraffin-embedded archival tissue sections with absolute quantitative assessment of methylated alleles (AQAMA). We tested the performance of the assay to detect methylation level differences between paired pre-malignant and malignant colorectal cancer stages. AQAMA assays were used to measure methylation levels at MINT (methylated in tumor) loci MINT1, MINT2, MINT12, and MINT31. Assay performance was verified on cell line DNA and standard cDNA. On-slide SBM, allowing DNA methylation assessment of 1 to 2 mm(2) of paraffin-embedded archival tissue, was employed. Methylation levels of adenomatous and cancerous components within a single tissue section in 72 colorectal cancer patients were analyzed. AQAMA was verified as accurately assessing CpG island methylation status in cell lines. The correlation between expected and measured cDNA methylation levels was high for all four MINT AQAMA assays (R >or= 0.966, P<0.001). Methylation levels at the four loci increased in 11% and decreased in 36% of specimens comparing paired adenoma and cancer tissues (P<0.0001 by Kolmogorov-Smirnov test). Single-PCR AQAMA provided accurate methylation level measurement. Variable MINT locus methylation level changes occur during malignant progression of colorectal adenoma. Combining AQAMA with on-slide SBM provides a sensitive assay that allows detailed histology-oriented analysis of DNA methylation levels and may give new, accurate insights into understanding development of epigenetic aberrancies in colorectal cancer progression.  相似文献   
68.
Photosynthesis Research - Recently, we isolated a complex consisting of photosystem II (PSII) and light-harvesting complexes (LHCs) from Nannochloropsis granulata (Umetani et al. Photosynth Res...  相似文献   
69.
Mouse Spot-1 is a DNA-binding protein with a domain (His-Thr) encoded by p(CA)n repeats. Spot-1 interacts with the nuclear localization signal (NLS) I of p53 through its His-Thr domain. In this study we describe the cloning and expression patterns of a novel gene encoding a protein containing a His-Thr domain, Spot-2. Spot-2 is exclusively expressed in the pituitary from stage E13.5 to E15.5. Mouse Lhx3 plays a critical role during early organogenesis in the pituitary. The Spot-2 gene appears to be a downstream gene of Lhx3. It is suggested that Spot-2 plays important roles in pituitary development.  相似文献   
70.
Seagrasses are composed of four families belonging to angiosperms and they are thought to become adaptive to aquatic life independently. Zosteraceae is one such family and because of the relatively high species diversity around Japan and Korea coast areas, the family might have arisen therefrom. To elucidate the origin and evolution of Zosteraceae which consists of three genera, Phyllospadix, Zostera, and Heterozostera, 2.8 kb nucleotide sequences of rbcL and matK genes in the chloroplast genome were examined for various species, including cosmopolitan Z. marina and endemic Z. caulescens. The phylogenetic analysis reveals the following three features. First, based on the synonymous nucleotide substitution rate of the rice chloroplast genome, we estimated the divergence times between Zosteraceae and its closest relative, Potamogetonaceae, and between different genera, Zostera and Phyllospadix, as approximately 100 million years (myr) and 36 myr, respectively, suggesting that Zosteraceae emerged somewhere in the period from 36 myr ago to 100 myr ago. Second, two subgenera of Zostera, Zostera and Zosterella, exhibit their reciprocal monophyly and appear to have differentiated from each other approximately 33 myr ago. However, the third genus Heterozostera branched off only 5 myr ago from the stem lineage leading to Zosterella and this seems too recent in comparison with the ancient divergence of the two subgenera. Third, we estimated the most recent common ancestor of subgenus Zostera as 6 myr. In Z. marina four haplotypes were found in the sample and have diversified in the past 1.5 myr. One haplotype is shared by both sides of the Japan Archipelago and its closely related haplotypes occur also in eastern Pacific Ocean. Based on these phylogeographic analyses, we propose a provisional age related classification of Zosteraceae to argue the origin and evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号