首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12219篇
  免费   644篇
  国内免费   3篇
  12866篇
  2023年   19篇
  2022年   46篇
  2021年   131篇
  2020年   82篇
  2019年   112篇
  2018年   156篇
  2017年   145篇
  2016年   235篇
  2015年   379篇
  2014年   447篇
  2013年   882篇
  2012年   812篇
  2011年   818篇
  2010年   535篇
  2009年   496篇
  2008年   820篇
  2007年   869篇
  2006年   777篇
  2005年   810篇
  2004年   796篇
  2003年   737篇
  2002年   692篇
  2001年   101篇
  2000年   98篇
  1999年   159篇
  1998年   182篇
  1997年   124篇
  1996年   123篇
  1995年   97篇
  1994年   92篇
  1993年   97篇
  1992年   96篇
  1991年   67篇
  1990年   64篇
  1989年   68篇
  1988年   39篇
  1987年   53篇
  1986年   50篇
  1985年   46篇
  1984年   56篇
  1983年   43篇
  1982年   62篇
  1981年   51篇
  1980年   55篇
  1979年   20篇
  1978年   24篇
  1977年   29篇
  1976年   32篇
  1975年   33篇
  1973年   21篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
Glutamate overproduction by Corynebacterium glutamicum is triggered by treatment with penicillin or Tween 40 and is accompanied by a decrease in 2-oxoglutarate dehydrogenase complex (ODHC) activity. We have reported that de novo synthesis of OdhI, which inhibits ODHC activity by interacting specifically with the E1o subunit of ODHC (OdhA), is induced by penicillin, and that odhI overexpression induces glutamate overproduction in the absence of any triggers for glutamate overproduction. In this study, to determine the function of OdhI in glutamate overproduction by C. glutamicum, changes in OdhI levels and phosphorylation status during penicillin- and Tween 40-induced glutamate overproduction were examined by western blot. The synthesis of both unphosphorylated and phosphorylated OdhI was increased by addition of Tween 40 or penicillin and the levels of unphosphorylated OdhI, which can inhibit ODHC activity, was significantly higher than those of phosphorylated OdhI, which is unable to inhibit ODHC activity. Meanwhile, the OdhA levels were maintained throughout the culture. These results indicate that OdhI synthesis is induced by additions of penicillin and Tween 40 and most synthesized OdhI is unphosphorylated, resulting in the decrease in ODHC activity and glutamate overproduction. Similarly, in the odhI-overexpressing strain, both unphosphorylated and phosphorylated OdhI were synthesized, while the levels of OdhA were nearly constant throughout culture. Our results suggest that high level of unphosphorylated OdhI regulates glutamate overproduction by C. glutamicum.  相似文献   
182.
Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, whereas the other species in the complex are repelled. Here, using interspecies hybrids between D. melanogaster deficiency mutants and D. sechellia, we showed that the Odorant-binding protein 57e (Obp57e) gene is involved in the behavioral difference between the species. D. melanogaster knock-out flies for Obp57e and Obp57d showed altered behavioral responses to hexanoic acid and octanoic acid. Furthermore, the introduction of Obp57d and Obp57e from D. simulans and D. sechellia shifted the oviposition site preference of D. melanogaster Obp57d/eKO flies to that of the original species, confirming the contribution of these genes to D. sechellia's specialization to M. citrifolia. Our finding of the genes involved in host-plant determination may lead to further understanding of mechanisms underlying taste perception, evolution of plant–herbivore interactions, and speciation.  相似文献   
183.
We describe the isolation of fission yeast homologues of tubulin-folding cofactors B (Alp11) and E (Alp21), which are essential for cell viability and the maintenance of microtubules. Alp11B contains the glycine-rich motif (the CLIP-170 domain) involved in microtubular functions, whereas, unlike mammalian cofactor E, Alp21E does not. Both mammalian and yeast cofactor E, however, do contain leucine-rich repeats. Immunoprecipitation analysis shows that Alp11B interacts with both α-tubulin and Alp21E, but not with the cofactor D homologue Alp1, whereas Alp21E also interacts with Alp1D. The cellular amount of α-tubulin is decreased in both alp1 and alp11 mutants. Overproduction of Alp11B results in cell lethality and the disappearance of microtubules, which is rescued by co-overproduction of α-tubulin. Both full-length Alp11B and the C-terminal third containing the CLIP-170 domain localize in the cytoplasm, and this domain is required for efficient binding to α-tubulin. Deletion of alp11 is suppressed by multicopy plasmids containing either alp21+ or alp1+, whereas alp21 deletion is rescued by overexpression of alp1+ but not alp11+. Finally, the alp1 mutant is not complemented by either alp11+ or alp21+. The results suggest that cofactors operate in a linear pathway (Alp11B-Alp21E-Alp1D), each with distinct roles.  相似文献   
184.
185.
Personalized medicine allows the selection of treatments best suited to an individual patient and disease phenotype. To implement personalized medicine, effective tests predictive of response to treatment or susceptibility to adverse events are needed, and to develop a personalized medicine test, both high quality samples and reliable data are required. We review key features of state-of-the-art proteomic profiling and introduce further analytic developments to build a proteomic toolkit for use in personalized medicine approaches. The combination of novel analytical approaches in proteomic data generation, alignment and comparison permit translation of identified biomarkers into practical assays. We further propose an expanded statistical analysis to understand the sources of variability between individuals in terms of both protein expression and clinical variables and utilize this understanding in a predictive test.  相似文献   
186.
The class I myosin genes are conserved in diverse organisms, and their gene products are involved in actin dynamics, endocytosis, and signal transduction. Drosophila melanogaster has three class I myosin genes, Myosin 31DF (Myo31DF), Myosin 61F (Myo61F), and Myosin 95E (Myo95E). Myo31DF, Myo61F, and Myo95E belong to the Myosin ID, Myosin IC, and Myosin IB families, respectively. Previous loss-of-function analyses of Myo31DF and Myo61F revealed important roles in left–right (LR) asymmetric development and enterocyte maintenance, respectively. However, it was difficult to elucidate their roles in vivo, because of potential redundant activities. Here we generated class I myosin double and triple mutants to address this issue. We found that the triple mutant was viable and fertile, indicating that all three class I myosins were dispensable for survival. A loss-of-function analysis revealed further that Myo31DF and Myo61F, but not Myo95E, had redundant functions in promoting the dextral LR asymmetric development of the male genitalia. Myo61F overexpression is known to antagonize the dextral activity of Myo31DF in various Drosophila organs. Thus, the LR-reversing activity of overexpressed Myo61F may not reflect its physiological function. The endogenous activity of Myo61F in promoting dextral LR asymmetric development was observed in the male genitalia, but not the embryonic gut, another LR asymmetric organ. Thus, Myo61F and Myo31DF, but not Myo95E, play tissue-specific, redundant roles in LR asymmetric development. Our studies also revealed differential colocalization of the class I myosins with filamentous (F)-actin in the brush border of intestinal enterocytes.  相似文献   
187.
Acquired immunity against infection with Trypanosoma cruzi is dependent on CD8(+)T cells. Here, to develop a vaccine strategy taking advantage of activated CD8(+)T cells, we constructed a DNA vaccine, designated pGFP-TSA1, encoding a fusion protein linking GFP to a single CTL epitope of TSA1, a leading candidate for vaccine against T. cruzi. C57BL/6 mice vaccinated with this plasmid showed suppressed parasitemia and prolonged survival. Vaccination with pGFP-TSA1 enhanced epitope-specific cytotoxicity and IFN-gamma secretion by CD8(+)T cells. Furthermore, the depletion of CD8(+)T cells prior to challenge infection with T. cruzi completely abolished this protection, indicating that CD8(+)T cells are the principal effector T cells involved. When mice deficient in the proteasome activator PA28alpha/beta or the immunoproteasome subunits LMP2 and LMP7 were used, the protective immunity against infection was profoundly attenuated. Our findings clearly demonstrate that vaccination with pGFP-TSA1 successfully induces protection dependent on CD8(+)T cell activation, in which immunoproteasomes play a crucial role. It is noteworthy to document that physical binding of the epitope and GFP is required for induction of this protection, since mice vaccinated with pTSA1-IRES-GFP failed to acquire resistance, probably because the epitope and GFP are separately expressed in the antigen-presenting cells.  相似文献   
188.
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is an important enzyme that catalyzes the last step in the synthesis of glycine betaine, a compatible solute accumulated by many plants under various abiotic stresses. In barley ( Hordeum vulgare L.), we reported previously the existence of two BADH genes ( BBD1 and BBD2 ) and their corresponding proteins, peroxisomal BADH (BBD1) and cytosolic BADH (BBD2). To investigate their enzymatic properties, we expressed them in Escherichia coli and purified both proteins. Enzymatic analysis indicated that the affinity of BBD2 for betaine aldehyde was reasonable as other plant BADHs, but BBD1 showed extremely low affinity for betaine aldehyde with apparent Km of 18.9 μ M and 19.9 m M , respectively. In addition, Vmax/Km with betaine aldehyde of BBD2 was about 2000-fold higher than that of BBD1, suggesting that BBD2 plays a main role in glycine betaine synthesis in barley plants. However, BBD1 catalyzed the oxidation of ω-aminoaldehydes such as 4-aminobutyraldehyde and 3-aminopropionaldehyde as efficiently as BBD2. We also found that both BBDs oxidized 4- N -trimethylaminobutyraldehyde and 3- N -trimethylaminopropionaldehyde.  相似文献   
189.
Conjugating Tetrahymena were irradiated by ultraviolet-B (UV-B) at various stages of conjugation. When the conjugants were exposed to the UV-B at late meiotic prophase (the stage from pachytene to diplotene), abortive conjugation was induced at high frequencies. After completing meiosis, a significant number of the conjugants showed marked anomalies, i.e., failure of nuclear selection after meiosis, and abortion of the subsequent conjugation process such as a postmeiotic division to form gametic nuclei, nuclear exchange, synkaryon formation, and postzygotic development. The conjugating pairs retained the parental macronucleus and separated earlier as compared with a control. The resultant exconjugants degenerated meiotic products and became amicronucleates. These observations strongly suggest the presence of a UV-sensitive molecule that is expressed specifically at the meiotic prophase and that directs the subsequent development after meiosis. Dev. Genet. 23:151–157, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
190.
Endothelin-1 (ET-1) is a potent vasoconstrictorpeptide, which also potentiates contractions to norepinephrine in humaninternal mammary and coronary vessels. Exercise causes a redistribution of blood flow, i.e., the increase in working muscles that is partly attributable to a decrease in visceral blood flow. We hypothesized thatexercise causes a tissue-specific increase in ET-1 expression ininternal organs. We studied whether exercise affects expression ofpreproET-1 mRNA in the kidneys and lungs. The rats performed treadmillrunning (0% grade) for 45 min at a speed of 25 m/min. The plasmaconcentrations of ET-1, epinephrine, and norepinephrine were greater inthe exercise rats than in the sedentary control rats. The expression ofpreproET-1 mRNA in the kidneys was markedly higher in the exercise ratsthan in the sedentary control rats, whereas that in the lungs did notdiffer between the two groups. Therefore, the present study provides apossibility that the exercise-induced increase in production of ET-1 inthe kidneys causes vasoconstriction and hence decreases blood flow inthe kidneys through its direct vasoconstrictive action and/orits indirect effect of enhancing vasoconstrictions to norepinephrine.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号