首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1389篇
  免费   76篇
  2023年   11篇
  2022年   16篇
  2021年   42篇
  2020年   23篇
  2019年   25篇
  2018年   35篇
  2017年   30篇
  2016年   27篇
  2015年   64篇
  2014年   78篇
  2013年   106篇
  2012年   122篇
  2011年   105篇
  2010年   63篇
  2009年   49篇
  2008年   81篇
  2007年   79篇
  2006年   58篇
  2005年   73篇
  2004年   57篇
  2003年   60篇
  2002年   46篇
  2001年   19篇
  2000年   20篇
  1999年   22篇
  1998年   12篇
  1997年   13篇
  1996年   11篇
  1995年   7篇
  1994年   4篇
  1993年   10篇
  1992年   6篇
  1991年   10篇
  1990年   8篇
  1989年   10篇
  1988年   10篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   6篇
  1983年   7篇
  1982年   3篇
  1980年   3篇
  1979年   3篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1966年   2篇
排序方式: 共有1465条查询结果,搜索用时 15 毫秒
131.
In non-irrigated agricultural fields in tropical zones, high temperature and water stress prevail during the main cropping season. Natural epizootics of Beauveria bassiana on lepidopteran pests occur during winter. Application of B. bassiana during hot months when pest populations are at their climax may prove an effective management strategy. Therefore, 29 isolates of B. bassiana were tested for their ability to germinate and grow in temperature and water availability conditions prevailing during the pest season in these fields. The effect of temperature cycles with 8 h duration of high temperature fluctuating with 16 h duration of lower temperature (similar to field conditions); low water availability; and a combination of these two stress conditions was studied. Germination and growth assays were done at fluctuating temperature cycles of 32, 35, 38, and 42+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and in media with water stress created by 10, 20, 30, and 40% polyethylene glycol (PEG 6000). Assays set at a continuous temperature of 25+/-1 degrees C with no PEG in the medium served as controls. Stress was assessed as percentage germination or as growth relative to control. Isolates showing 90% growth relative to the control at temperature cycles including high temperatures of 35 and 38+/-1 degrees C were identified. One isolate (ARSEF 2860) had a thermal threshold above 43 degrees C. At 25 degrees C, all but one isolate of B. bassiana showed >90% growth relative to the control in 10% PEG (-0.45 MPa). Some isolates were found with >90% growth relative to control in medium having 30% PEG with water availability (1.33 MPa), nearly equivalent to that in soils which induce permanent wilting point of plants. When isolates that showed >90% growth relative to the control at both stress conditions, were stressed simultaneously, a decrease in growth was observed. Growth was reduced by approximately 20% at 35+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and 10% PEG and was affected to a greater degree in combinations of harsher stress conditions. The isolate ARSEF 2860 with a thermal threshold of >43 degrees C showed approximately 80% relative growth at a combined stress of 38+/-1 degrees C (8 h)/25+/-1 degrees C (16 h) and 10% PEG. These findings will aid the selection of isolates for use in field trials in hot or dry agricultural climates.  相似文献   
132.
The conversion of prothrombin to thrombin is catalyzed by prothrombinase, an enzyme complex composed of the serine proteinase factor Xa and a cofactor protein, factor Va, assembled on membranes. Kinetic studies indicate that interactions with extended macromolecular recognition sites (exosites) rather than the active site of prothrombinase are the principal determinants of binding affinity for substrate or product. We now provide a model-independent evaluation of such ideas by physical studies of the interaction of substrate derivatives and product with prothrombinase. The enzyme complex was assembled using Xa modified with a fluorescent peptidyl chloromethyl ketone to irreversibly occlude the active site. Binding was inferred by prethrombin 2-dependent perturbations in the fluorescence of Oregon Green(488) at the active site of prothrombinase. Active site-independent binding was also unequivocally established by fluorescence resonance energy transfer between 2,6-dansyl tethered to the active site of Xa and eosin tethered to the active sites of either thrombin or meizothrombin des fragment 1. Comparable interprobe distances obtained from these measurements suggest that substrate and product interact equivalently with the enzyme. Competition established the ability of a range of substrate or product derivatives to bind in a mutually exclusive fashion to prothrombinase. Equilibrium dissociation constants obtained for the active site-independent binding of prothrombin, prethrombin 2, meizothrombin des fragment 1 and thrombin to prothrombinase were comparable with their affinities inferred from kinetic studies using active enzyme. Our findings directly establish that binding affinity is principally determined by the exosite-mediated interaction of either the substrate, both possible intermediates, or product with prothrombinase. A single type of exosite binding interaction evidently drives affinity and binding specificity through the stepwise reactions necessary for the two cleavage reactions of prothrombin activation and product release.  相似文献   
133.
The loop between alpha-helix 6 and beta-strand 6 in the alpha/beta-barrel active site of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) plays a key role in discriminating between gaseous substrates CO(2) and O(2). Based on numerous x-ray crystal structures, loop 6 is either closed or open depending on the presence or absence, respectively, of substrate ligands. The carboxyl terminus folds over loop 6 in the closed conformation, prompting speculation that it may trigger or latch loop 6 closure. Because an x-ray crystal structure of tobacco Rubisco revealed that phosphate is located at a site in the open form that is occupied by the carboxyl group of Asp-473 in the closed form, it was proposed that Asp-473 may serve as the latch that holds the carboxyl terminus over loop 6. To assess the essentiality of Asp-473 in catalysis, we used directed mutagenesis and chloroplast transformation of the green alga Chlamydomonas reinhardtii to create D473A and D473E mutant enzymes. The D473A and D473E mutant strains can grow photoautotrophically, indicating that Asp-473 is not essential for catalysis. However, both substitutions caused 87% decreases in carboxylation catalytic efficiency (V(max)/K(m)) and approximately 16% decreases in CO(2)/O(2) specificity. If the carboxyl terminus is required for stabilizing loop 6 in the closed conformation, there must be additional residues at the carboxyl terminus/loop 6 interface that contribute to this mechanism. Considering that substitutions at residue 473 can influence CO(2)/O(2) specificity, further study of interactions between loop 6 and the carboxyl terminus may provide clues for engineering an improved Rubisco.  相似文献   
134.
Membrane proteins that belong to the major facilitator superfamily (MFS) are found in organisms across the evolutionary spectrum and mediate the transport of a variety of substrates ranging from small metabolites to neurotransmitters. The oxalate transporter (OxlT) is a representative MFS protein, and exchanges formate for oxalate across the cytoplasmic membrane of the organism Oxalobacter formigenes. Here, we present a structural model for the protein conformational changes that occur during oxalate transport by combining a three-dimensional map of the oxalate-bound, "closed" state of OxlT at 6.5 A determined by cryo-electron microscopy with a model of the "open" state of OxlT based on the atomic structures of the related transporters, glycerol-3-phosphate transporter (GlpT) and lactose permease (LacY). We demonstrate that the principal structural change associated with substrate transport is a concerted rocking movement of the two structurally similar halves of the protein relative to each other. Our structural model places two positively charged residues, Arg-272 and Lys-355 in the central cavity, suggesting that electrostatic interactions between these residues and the oxalate anion is a key step in generating the conformational change between the open and closed states of the transporter.  相似文献   
135.
Electron tomography is a powerful method for determining the three-dimensional structures of large macromolecular assemblies, such as cells, organelles, and multiprotein complexes, when crystallographic averaging methods are not applicable. Here we used electron tomographic imaging to determine the molecular architecture of Escherichia coli cells engineered to overproduce the bacterial chemotaxis receptor Tsr. Tomograms constructed from fixed, cryosectioned cells revealed that overproduction of Tsr led to formation of an extended internal membrane network composed of stacks and extended tubular structures. We present an interpretation of the tomogram in terms of the packing arrangement of Tsr using constraints derived from previous X-ray and electron-crystallographic studies of receptor clusters. Our results imply that the interaction between the cytoplasmic ends of Tsr is likely to stabilize the presence of the membrane networks in cells overproducing Tsr. We propose that membrane invaginations that are potentially capable of supporting axial interactions between receptor clusters in apposing membranes could also be present in wild-type E. coli and that such receptor aggregates could play an important role in signal transduction during bacterial chemotaxis.  相似文献   
136.
137.
Extracts prepared from seeds of Manilkara zapota, Anona squamosa, and Tamarindus indica were screened for their antibacterial activity by disc diffusion and broth dilution methods. Acetone and methanol extracts of T. indica seeds were found active against both gram-positive and gram-negative organisms. MIC values of potent extracts against susceptible organisms ranged from 53-380 μg/mL. Methanol extract of T. indica and acetone extract of M. zapota seeds were found to be bactericidal.  相似文献   
138.
139.
NK T (NKT) cells are an important component of the innate immune system and recognize the MHC class I-like CD1d molecule. NKT cells possess significant immunoregulatory activity due to their rapid secretion of large quantities of pro- and anti-inflammatory cytokines following CD1d-dependent stimulation. Because the innate immune system is programmed to respond to a multitude of diverse stimuli and must be able to quickly differentiate between pathogenic and endogenous signals, we hypothesized that, apart from stimulation via the TCR (e.g., CD1d-dependent activation), there must be multiple activation pathways that can be triggered through other cell surface receptors on NKT cells. Therefore, we analyzed the ability of CD44, a structurally diverse cell surface receptor expressed on most cells, to stimulate murine NKT cells, compared with conventional T cells. Stimulation of CD44 through Ab cross-linking or binding to its natural ligands hyaluronan and osteopontin induced NKT cells to secrete cytokines, up-regulate activation markers, undergo morphological changes, and resist activation-induced cell death, whereas conventional T cells only exhibited changes in morphology and protection from activation-induced cell death. This CD44-specific stimulation of NKT cells correlated with their ability to bind hyaluronan. Thus, fundamental differences in CD44 function between these lymphocyte subsets suggest an important biological role for CD44 in the innate immune response.  相似文献   
140.
Mutations in SOD1 cause FALS by a gain of function likely related to protein misfolding and aggregation. SOD1 mutations encompass virtually every domain of the molecule, making it difficult to identify motifs important in SOD1 aggregation. Zinc binding to SOD1 is important for structural integrity, and is hypothesized to play a role in mutant SOD1 aggregation. To address this question, we mutated the unique zinc binding sites of SOD1 and examined whether these changes would influence SOD1 aggregation. We generated single and multiple mutations in SOD1 zinc binding residues (H71, H80 and D83) either alone or in combination with an aggregate forming mutation (A4V) known to cause disease. These SOD1 mutants were assayed for their ability to form aggregates.Using an in vitro cellular SOD1 aggregation assay, we show that combining A4V with mutations in non-zinc binding domains (G37R or G85R) increases SOD1 aggregation potential. Mutations at two zinc binding residues (H71G and D83G) also increase SOD1 aggregation potential. However, an H80G mutation at the third zinc binding residue decreases SOD1 aggregation potential even in the context of other aggregate forming SOD1 mutations. These results demonstrate that various mutations have different effects on SOD1 aggregation potential and that the H80G mutation appears to uniquely act as a dominant inhibitor of SOD1 aggregation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号