首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2449篇
  免费   211篇
  2660篇
  2023年   4篇
  2022年   18篇
  2021年   49篇
  2020年   17篇
  2019年   20篇
  2018年   32篇
  2017年   35篇
  2016年   76篇
  2015年   116篇
  2014年   130篇
  2013年   144篇
  2012年   218篇
  2011年   205篇
  2010年   151篇
  2009年   131篇
  2008年   141篇
  2007年   156篇
  2006年   136篇
  2005年   123篇
  2004年   147篇
  2003年   124篇
  2002年   128篇
  2001年   30篇
  2000年   20篇
  1999年   31篇
  1998年   39篇
  1997年   23篇
  1996年   19篇
  1995年   20篇
  1994年   20篇
  1993年   22篇
  1992年   18篇
  1991年   12篇
  1990年   11篇
  1989年   16篇
  1988年   7篇
  1987年   7篇
  1986年   9篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
排序方式: 共有2660条查询结果,搜索用时 13 毫秒
71.
72.
Dendrites represent arborising neurites in both vertebrates and invertebrates. However, in vertebrates, dendrites develop on neuronal cell bodies, whereas in higher invertebrates, they arise from very different neuronal structures, the primary neurites, which also form the axons. Is this anatomical difference paralleled by principal developmental and/or physiological differences? We address this question by focussing on one cellular model, motorneurons of Drosophila and characterise the compartmentalisation of these cells. We find that motorneuronal dendrites of Drosophila share with typical vertebrate dendrites that they lack presynaptic but harbour postsynaptic proteins, display calcium elevation upon excitation, have distinct cytoskeletal features, develop later than axons and are preceded by restricted localisation of Par6-complex proteins. Furthermore, we demonstrate in situ and culture that Drosophila dendrites can be shifted from the primary neurite to their soma, i.e. into vertebrate-like positions. Integrating these different lines of argumentation, we propose that dendrites in vertebrates and higher invertebrates have a common origin, and differences in dendrite location can be explained through translocation of neuronal cell bodies introduced during the evolutionary process by which arthropods and vertebrates diverged from a common urbilaterian ancestor. Implications of these findings for studies of dendrite development, neuronal polarity, transport and evolution are discussed.  相似文献   
73.
It has been suggested that hormone therapy (HT) in postmenopausal women differentially affects verbal and visuo-spatial abilities which mainly rely on left hemisphere (LH) and right hemisphere (RH) functioning, respectively. Thus, it seems likely that HT-related effects on cognition are driven by associated hormonal changes and their impact on functional brain organization, and functional cerebral asymmetries (FCAs) in particular. The present study investigated HT-related effects on FCAs in sixty-seven postmenopausal women who received hormone therapy either with estrogen (E) alone (n =  14), an E-gestagen combination (n =  22) or without HT (control group, n =  31). Saliva levels of free E and progesterone (P) were analyzed using chemiluminescence assays. FCAs were measured with the visual half-field (VHF) technique using a word matching and a figural comparison task. In agreement with previous results, a postmenopausal control group showed a left hemisphere (LH) advantage in the verbal task and a right hemisphere (RH) advantage in visuo-spatial processing. In contrast, both HT groups revealed significantly reduced FCAs in the figural comparison task as a result of an E-related decrease in RH performance. The findings suggest that E-therapy in postmenopausal women can affect visuo-spatial abilities by modulating the functional brain organization and RH functioning in particular.  相似文献   
74.
75.
76.
The microphthalmia with linear skin defects syndrome (MLS, or MIDAS) is an X-linked dominant male-lethal disorder almost invariably associated with segmental monosomy of the Xp22 region. In two female patients, from two families, with MLS and a normal karyotype, we identified heterozygous de novo point mutations--a missense mutation (p.R217C) and a nonsense mutation (p.R197X)--in the HCCS gene. HCCS encodes the mitochondrial holocytochrome c-type synthase that functions as heme lyase by covalently adding the prosthetic heme group to both apocytochrome c and c(1). We investigated a third family, displaying phenotypic variability, in which the mother and two of her daughters carry an 8.6-kb submicroscopic deletion encompassing part of the HCCS gene. Functional analysis demonstrates that both mutant proteins (R217C and Delta 197-268) were unable to complement a Saccharomyces cerevisiae mutant deficient for the HCCS orthologue Cyc3p, in contrast to wild-type HCCS. Moreover, ectopically expressed HCCS wild-type and the R217C mutant protein are targeted to mitochondria in CHO-K1 cells, whereas the C-terminal-truncated Delta 197-268 mutant failed to be sorted to mitochondria. Cytochrome c, the final product of holocytochrome c-type synthase activity, is implicated in both oxidative phosphorylation (OXPHOS) and apoptosis. We hypothesize that the inability of HCCS-deficient cells to undergo cytochrome c-mediated apoptosis may push cell death toward necrosis that gives rise to severe deterioration of the affected tissues. In summary, we suggest that disturbance of both OXPHOS and the balance between apoptosis and necrosis, as well as the X-inactivation pattern, may contribute to the variable phenotype observed in patients with MLS.  相似文献   
77.

Background

Music listening has been suggested to beneficially impact health via stress-reducing effects. However, the existing literature presents itself with a limited number of investigations and with discrepancies in reported findings that may result from methodological shortcomings (e.g. small sample size, no valid stressor). It was the aim of the current study to address this gap in knowledge and overcome previous shortcomings by thoroughly examining music effects across endocrine, autonomic, cognitive, and emotional domains of the human stress response.

Methods

Sixty healthy female volunteers (mean age = 25 years) were exposed to a standardized psychosocial stress test after having been randomly assigned to one of three different conditions prior to the stress test: 1) relaxing music (‘Miserere’, Allegri) (RM), 2) sound of rippling water (SW), and 3) rest without acoustic stimulation (R). Salivary cortisol and salivary alpha-amylase (sAA), heart rate (HR), respiratory sinus arrhythmia (RSA), subjective stress perception and anxiety were repeatedly assessed in all subjects. We hypothesized that listening to RM prior to the stress test, compared to SW or R would result in a decreased stress response across all measured parameters.

Results

The three conditions significantly differed regarding cortisol response (p = 0.025) to the stressor, with highest concentrations in the RM and lowest in the SW condition. After the stressor, sAA (p=0.026) baseline values were reached considerably faster in the RM group than in the R group. HR and psychological measures did not significantly differ between groups.

Conclusion

Our findings indicate that music listening impacted the psychobiological stress system. Listening to music prior to a standardized stressor predominantly affected the autonomic nervous system (in terms of a faster recovery), and to a lesser degree the endocrine and psychological stress response. These findings may help better understanding the beneficial effects of music on the human body.  相似文献   
78.
The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection.  相似文献   
79.
80.
Digitalis lanata was transformed by agrobacteria-mediated gene transfer with a chimeric reporter gene encoding for β-glucuronidase (CUS) from Escherichia coll under the control of the plastocyanin 3 (Pc3) promoter from Spinada oleracea (Pc3::uidA fusion gene). Transformed cell lines were regenerated to plants via somatic embryos. CUS activity was determined fluorometrically and histochemically. The Pc3::uidA fusion gene was expressed in the late globular and bipolar stages of somatic embryos. Expression started in globular embryos (stage-1-globules) in that part of the parenchymatic tissue which later on formed the cotyledons. No GUS activity was detectable in the parenchymatic tissue forming the root pole, in cells of the developing procambium or in epidermal cells. These tissues were free of GUS activity also in bipolar embryos. The parenchymatic cells of the cotyledons and the primary cortex of the hypocotyl of germinating embryos showed GUS activity, in contrast to the epidermal cells and the cells of the central cylinder.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号