全文获取类型
收费全文 | 2450篇 |
免费 | 210篇 |
专业分类
2660篇 |
出版年
2023年 | 4篇 |
2022年 | 18篇 |
2021年 | 49篇 |
2020年 | 17篇 |
2019年 | 20篇 |
2018年 | 32篇 |
2017年 | 35篇 |
2016年 | 76篇 |
2015年 | 116篇 |
2014年 | 130篇 |
2013年 | 144篇 |
2012年 | 218篇 |
2011年 | 205篇 |
2010年 | 151篇 |
2009年 | 131篇 |
2008年 | 141篇 |
2007年 | 156篇 |
2006年 | 136篇 |
2005年 | 123篇 |
2004年 | 147篇 |
2003年 | 124篇 |
2002年 | 128篇 |
2001年 | 30篇 |
2000年 | 20篇 |
1999年 | 31篇 |
1998年 | 39篇 |
1997年 | 23篇 |
1996年 | 19篇 |
1995年 | 20篇 |
1994年 | 20篇 |
1993年 | 22篇 |
1992年 | 18篇 |
1991年 | 12篇 |
1990年 | 11篇 |
1989年 | 16篇 |
1988年 | 7篇 |
1987年 | 7篇 |
1986年 | 9篇 |
1985年 | 4篇 |
1984年 | 4篇 |
1983年 | 3篇 |
1982年 | 7篇 |
1981年 | 5篇 |
1980年 | 4篇 |
1979年 | 5篇 |
1978年 | 5篇 |
1977年 | 4篇 |
1975年 | 3篇 |
1974年 | 3篇 |
1973年 | 3篇 |
排序方式: 共有2660条查询结果,搜索用时 15 毫秒
101.
In nature, alpha-helical antimicrobial peptides present the small and flexible residue glycine at positions 7 or 14 with a significant frequency. Based on the sequence of the non-proteinogenic alpha-helical model peptide P1(Aib7), with a potent, broad spectrum antimicrobial activity, six peptides were designed by effecting a single amino acid substitution to investigate how tuning the structural characteristics at position 7 could lead to optimization of selectivity without affecting antimicrobial activity against a broad panel of multidrug resistant bacterial and yeast indicator strains. The relationship between structural features (size/hydrophobicity of the side chain as well as conformation and flexibility) and biological activity, in terms of minimum inhibitory concentration, membrane permeabilization kinetics and lysis of red blood cells are discussed. On conversion of the peptide to proteinogenic residues, these principles allowed development of a potent antimicrobial peptide with a reduced cytotoxicity. However, while results suggest that both hydrophobicity of residue 7 and chain flexibility at this position can be modulated to improve selectivity, position 14 is less tolerant of substitutions. 相似文献
102.
Shumilina E Lam RS Wölbing F Matzner N Zemtsova IM Sobiesiak M Mahmud H Sausbier U Biedermann T Ruth P Sausbier M Lang F 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(12):8040-8047
Mast cell stimulation by Ag is followed by the opening of Ca(2+)-activated K(+) channels, which participate in the orchestration of mast cell degranulation. The present study has been performed to explore the involvement of the Ca(2+)-activated K(+) channel K(Ca)3.1 in mast cell function. To this end mast cells have been isolated and cultured from the bone marrow (bone marrow-derived mast cells (BMMCs)) of K(Ca)3.1 knockout mice (K(Ca)3.1(-/-)) and their wild-type littermates (K(Ca)3.1(+/+)). Mast cell number as well as in vitro BMMC growth and CD117, CD34, and FcepsilonRI expression were similar in both genotypes, but regulatory cell volume decrease was impaired in K(Ca)3.1(-/-) BMMCs. Treatment of the cells with Ag, endothelin-1, or the Ca(2+) ionophore ionomycin was followed by stimulation of Ca(2+)-activated K(+) channels and cell membrane hyperpolarization in K(Ca)3.1(+/+), but not in K(Ca)3.1(-/-) BMMCs. Upon Ag stimulation, Ca(2+) entry but not Ca(2+) release from intracellular stores was markedly impaired in K(Ca)3.1(-/-) BMMCs. Similarly, Ca(2+) entry upon endothelin-1 stimulation was significantly reduced in K(Ca)3.1(-/-) cells. Ag-induced release of beta-hexosaminidase, an indicator of mast cell degranulation, was significantly smaller in K(Ca)3.1(-/-) BMMCs compared with K(Ca)3.1(+/+) BMMCs. Moreover, histamine release upon stimulation of BMMCs with endothelin-1 was reduced in K(Ca)3.1(-/-) cells. The in vivo Ag-induced decline in body temperature revealed that IgE-dependent anaphylaxis was again significantly (by approximately 50%) blunted in K(Ca)3.1(-/-) mice. In conclusion, K(Ca)3.1 is required for Ca(2+)-activated K(+) channel activity and Ca(2+)-dependent processes such as endothelin-1- or Ag-induced degranulation of mast cells, and may thus play a critical role in anaphylactic reactions. 相似文献
103.
Krasel C Zabel U Lorenz K Reiner S Al-Sabah S Lohse MJ 《The Journal of biological chemistry》2008,283(46):31840-31848
Homologous desensitization of beta2-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta2-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta2-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2. 相似文献
104.
105.
Vivienne C.M. Neeve Angela Pyle Veronika Boczonadi Aurora Gomez-Duran Helen Griffin Mauro Santibanez-Koref Ulrike Gaiser Peter Bauer Andreas Tzschach Patrick F. Chinnery Rita Horvath 《Mitochondrion》2013,13(6):743-748
Exome sequencing identified compound heterozygous mutations in the recently discovered mitochondrial methionyl-tRNA formyltransferase (MTFMT) gene in two sisters with mild Leigh syndrome and combined respiratory chain deficiency. The mutations lead to undetectable levels of the MTFMT protein. Blue native polyacrylamide gel electrophoresis showed decreased complexes I and IV, and additional products stained with complex V antibodies, however the overall steady state level of mt-tRNAMet was normal. Our data illustrate that exome sequencing is an excellent diagnostic tool, and its value in clinical medicine is enormous, however it can only be optimally exploited if combined with detailed phenotyping and functional studies. 相似文献
106.
Ute Armbruster Mathias Labs Mathias Pribil Stefania Viola Wenteng Xu Michael Scharfenberg Alexander P. Hertle Ulrike Rojahn Poul Erik Jensen Fabrice Rappaport Pierre Joliot Peter D?rmann Gerhard Wanner Dario Leister 《The Plant cell》2013,25(7):2661-2678
Chloroplasts of land plants characteristically contain grana, cylindrical stacks of thylakoid membranes. A granum consists of a core of appressed membranes, two stroma-exposed end membranes, and margins, which connect pairs of grana membranes at their lumenal sides. Multiple forces contribute to grana stacking, but it is not known how the extreme curvature at margins is generated and maintained. We report the identification of the CURVATURE THYLAKOID1 (CURT1) protein family, conserved in plants and cyanobacteria. The four Arabidopsis thaliana CURT1 proteins (CURT1A, B, C, and D) oligomerize and are highly enriched at grana margins. Grana architecture is correlated with the CURT1 protein level, ranging from flat lobe-like thylakoids with considerably fewer grana margins in plants without CURT1 proteins to an increased number of membrane layers (and margins) in grana at the expense of grana diameter in overexpressors of CURT1A. The endogenous CURT1 protein in the cyanobacterium Synechocystis sp PCC6803 can be partially replaced by its Arabidopsis counterpart, indicating that the function of CURT1 proteins is evolutionary conserved. In vitro, Arabidopsis CURT1A proteins oligomerize and induce tubulation of liposomes, implying that CURT1 proteins suffice to induce membrane curvature. We therefore propose that CURT1 proteins modify thylakoid architecture by inducing membrane curvature at grana margins. 相似文献
107.
Wibke Singer Annalisa Zuccotti Mirko Jaumann Sze Chim Lee Rama Panford-Walsh Hao Xiong Ulrike Zimmermann Christoph Franz Hyun-Soon Geisler Iris Köpschall Karin Rohbock Ksenya Varakina Sandrine Verpoorten Thomas Reinbothe Thomas Schimmang Lukas Rüttiger Marlies Knipper 《Molecular neurobiology》2013,47(1):261-279
Increasing evidence shows that hearing loss is a risk factor for tinnitus and hyperacusis. Although both often coincide, a causal relationship between tinnitus and hyperacusis has not been shown. Currently, tinnitus and hyperacusis are assumed to be caused by elevated responsiveness in subcortical circuits. We examined both the impact of different degrees of cochlear damage and the influence of stress priming on tinnitus induction. We used (1) a behavioral animal model for tinnitus designed to minimize stress, (2) ribbon synapses in inner hair cells (IHCs) as a measure for deafferentation, (3) the integrity of auditory brainstem responses (ABR) to detect differences in stimulus-evoked neuronal activity, (4) the expression of the activity-regulated cytoskeletal protein, Arc, to identify long-lasting changes in network activity within the basolateral amygdala (BLA), hippocampal CA1, and auditory cortex (AC), and (5) stress priming to investigate the influence of corticosteroid on trauma-induced brain responses. We observed that IHC ribbon loss (deafferentation) leads to tinnitus when ABR functions remain reduced and Arc is not mobilized in the hippocampal CA1 and AC. If, however, ABR waves are functionally restored and Arc is mobilized, tinnitus does not occur. Both central response patterns were found to be independent of a profound threshold loss and could be shifted by the corticosterone level at the time of trauma. We, therefore, discuss the findings in the context of a history of stress that can trigger either an adaptive or nonadaptive brain response following injury. 相似文献
108.
The integral membrane protein Cvt17/Aut5p is a putative lipase essential for intravacuolar lysis of autophagic bodies. It is localized at the endoplasmic reticulum, from which it is targeted via the multivesicular body (MVB) pathway to intravacuolar MVB vesicles. Proteinase protection experiments now demonstrate that the Aut5 amino terminus is located in the cytosol, and the carboxyl terminus is located inside the ER lumen. In contrast to procarboxypeptidase S, targeting of Cvt17/Aut5p to MVB vesicles is not blocked in cells lacking the ubiquitin ligase Tul1p or the deubiquitinating enzyme Doa4p. Also, truncation of the amino-terminal cytosolic Cvt17/Aut5p domain does not inhibit its targeting to MVB vesicles. These findings suggest that similar to Sna3p sorting of Cvt17/Aut5p to MVB vesicles is independent of ubiquitination. By fusing the ER retention/retrieval signal HDEL to the carboxyl terminus of Cvt17/Aut5p, we generated a construct that is held back at the ER. Detailed analysis of this construct suggests an essential role of vacuolar targeting of Cvt17/Aut5p for its function. Consistently, aut5Delta cells are found impaired in vacuolar degradation of autophagocytosed peroxisomes. Importantly, biochemical and morphological data further suggest involvement of Cvt17/Aut5p in disintegration of intravacuolar MVB vesicles. This points to a general function of Cvt17/Aut5p in intravacuolar membrane breakdown. 相似文献
109.
110.
Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2 总被引:8,自引:0,他引:8
Mitotic kinases of the Polo and Aurora families are key regulators of chromosome segregation and cytokinesis. Here, we have investigated the role of MKlp1 and MKlp2, two vertebrate mitotic kinesins essential for cytokinesis, in the spatial regulation of the Aurora B kinase. Previously, we have demonstrated that MKlp2 recruits Polo-like kinase 1 (Plk1) to the central spindle in anaphase. We now find that in MKlp2 but not MKlp1-depleted cells the Aurora B-INCENP complex remains at the centromeres and fails to relocate to the central spindle. MKlp2 exerts dual control over Aurora B localization, because it is a binding partner for Aurora B, and furthermore for the phosphatase Cdc14A. Cdc14A can dephosphorylate INCENP and may contribute to its relocation to the central spindle in anaphase. We propose that MKlp2 is involved in the localization of Plk1, Aurora B, and Cdc14A to the central spindle during anaphase, and that the integration of signaling by these proteins is necessary for proper cytokinesis. 相似文献