首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8061篇
  免费   839篇
  2022年   49篇
  2021年   131篇
  2020年   66篇
  2019年   73篇
  2018年   106篇
  2017年   102篇
  2016年   178篇
  2015年   273篇
  2014年   333篇
  2013年   389篇
  2012年   571篇
  2011年   484篇
  2010年   341篇
  2009年   313篇
  2008年   366篇
  2007年   401篇
  2006年   351篇
  2005年   320篇
  2004年   356篇
  2003年   310篇
  2002年   309篇
  2001年   209篇
  2000年   204篇
  1999年   190篇
  1998年   112篇
  1997年   93篇
  1996年   77篇
  1995年   81篇
  1994年   85篇
  1993年   65篇
  1992年   144篇
  1991年   112篇
  1990年   105篇
  1989年   114篇
  1988年   99篇
  1987年   95篇
  1986年   102篇
  1985年   69篇
  1984年   65篇
  1983年   59篇
  1982年   74篇
  1981年   56篇
  1979年   69篇
  1978年   73篇
  1977年   50篇
  1976年   51篇
  1975年   63篇
  1974年   69篇
  1973年   45篇
  1972年   41篇
排序方式: 共有8900条查询结果,搜索用时 31 毫秒
951.
hGTSE-1 (human G(2) and S phase-expressed-1) is a cell cycle-regulated protein mainly localized in the cytoplasm and apparently associated with the microtubules. hGTSE-1 is able to down-regulate levels and activity of the p53 tumor suppressor protein: it binds the C-terminal region of p53 and represses its ability to induce apoptosis after DNA damage. Here we report that, after DNA damage, hGTSE-1 becomes stabilized in a p53-independent way and accumulated in the nucleus. Further characterization of hGTSE-1 localization revealed increased nuclear staining in unstressed cells after treatment with the nuclear export inhibitor leptomycin B, or when a nuclear export signal (NES) located in its C-terminal region was mutated. Finally, we provide evidence that hGTSE-1 ectopic expression, in addition to p53 protein levels down-regulation, is able to enhance cytoplasmic localization of p53. Interestingly, NES-mutated hGTSE-1 accumulates in the nucleus, binds p53 but looses its ability to enhance cytoplasmic redistribution of p53 and to regulate p53 protein levels. Similarly, when wild type hGTSE-1 functions on p53 were analyzed in cells lacking Mdm2, it failed in regulating both p53 localization and protein levels, thus indicating that hGTSE-1 requires an intact NES and functional Mdm2 for the regulation of p53. Our results provide new insights into the mechanism of hGTSE-1 function, whereby its characterized nucleo-cytoplasmic shuttling ability is required to regulate p53.  相似文献   
952.
Cytochromes from the SoxAX family have a major role in thiosulfate oxidation via the thiosulfate-oxidizing multi-enzyme system (TOMES). Previously characterized SoxAX proteins from Rhodovulum sulfidophilum and Paracoccus pantotrophus contain three heme c groups, two of which are located on the SoxA subunit. In contrast, the SoxAX protein purified from Starkeya novella was found to contain only two heme groups. Mass spectrometry showed that a disulfide bond replaced the second heme group found in the diheme SoxA subunits. Apparent molecular masses of 27,229 +/- 10.3 Da and 20,258.6 +/- 1 Da were determined for SoxA and SoxX with an overall mass of 49.7 kDa, indicating a heterodimeric structure. Optical redox potentiometry found that the two heme cofactors are reduced at similar potentials (versus NHE) that are as follows: +133 mV (pH 6.0); +104 mV (pH 7.0); +49 (pH 7.9) and +10 mV (pH 8.7). EPR spectroscopy revealed that both ferric heme groups are in the low spin state, and the spectra were consistent with one heme having a His/Cys axial ligation and the other having a His/Met axial ligation. The His/Cys ligated heme is present in different conformational states and gives rise to three distinct signals. Amino acid sequencing was used to unambiguously assign the protein to the encoding genes, soxAX, which are part of a complete sox gene cluster found in S. novella. Phylogenetic analysis of soxA- and soxX-related gene sequences indicates a parallel development of SoxA and SoxX, with the diheme and monoheme SoxA sequences located on clearly separated branches of a phylogenetic tree.  相似文献   
953.
954.
Structure-based iterative design was used to prepare a disulfide-containing nonapeptide as a fluorimetric probe for chemical and biochemical disulfide forming and breaking reactions. The peptide is composed entirely of natural amino acids and exhibits a marked (42%) change in fluorescence between its oxidized and its reduced states. The probe is easily synthesized and highly water soluble and exhibits well-behaved kinetics on reduction with the reductant tris-carboxyethylphosphine. The reduced peptide is an excellent substrate of the enzyme quiescin-sulfhydryl oxidase and may find utility in the characterization of other disulfide oxidoreductases.  相似文献   
955.
In vitro evolution of RNA aptamers recognizing carcinogenic aromatic amines   总被引:3,自引:0,他引:3  
The modification of cellular DNA by environmental substances is thought to be a crucial event in chemical induced carcinogenesis. Among the environmental carcinogens, aromatic amines are known for the fact that they can induce several types of cancers through the formation of so-called DNA adducts. We took advantage of the potential of the SELEX method to select for highly specific RNA ligands that recognize specific genotoxic aromatic amines. The aromatic amine 4,4'-methylenedianiline (MDA) was used as a target. Following in vitro selection, we obtained specific MDA-binding RNA molecules based on an affinity chromatography assay. These results open the possibility of using the SELEX technique to generate RNA molecules as diagnostic tools for the detection of DNA damaging compounds and ultimately DNA adducts.  相似文献   
956.
Axonal damage is a major morphological correlate and cause of permanent neurological deficits in patients with multiple sclerosis (MS), a multifocal, inflammatory and demyelinating disease of the central nervous system. Hyperphosphorylation and pathological aggregation of microtubule-associated protein tau is a common feature of many neurodegenerative diseases with axonal degeneration including Alzheimer's disease. We have therefore analyzed tau phosphorylation, solubility and distribution in the brainstem of rats with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Tau was hyperphosphorylated at several sites also phosphorylated in Alzheimer's disease and became partially detergent-insoluble in EAE brains. Morphological examination demonstrated accumulation of amorphous deposits of abnormally phosphorylated tau in the cell body and axons of neurons within demyelinating plaques. Hyperphosphorylation of tau was accompanied by up-regulation of p25, an activator of cyclin-dependent kinase 5. Phosphorylation of tau, activation of cdk5, and axonal pathology were significantly reduced when diseased rats were treated with prednisolone, a standard therapy of acute relapses in MS. Hyperphosphorylation of tau was not observed in a genetic or nutritional model of axonal degeneration or demyelination, suggesting that inflammation as detected in the brains of rats with EAE is the specific trigger of tau pathology. In summary, our data provide evidence that axonal damage in EAE and possibly MS is linked to tau pathology.  相似文献   
957.
Mitotic kinases of the Polo and Aurora families are key regulators of chromosome segregation and cytokinesis. Here, we have investigated the role of MKlp1 and MKlp2, two vertebrate mitotic kinesins essential for cytokinesis, in the spatial regulation of the Aurora B kinase. Previously, we have demonstrated that MKlp2 recruits Polo-like kinase 1 (Plk1) to the central spindle in anaphase. We now find that in MKlp2 but not MKlp1-depleted cells the Aurora B-INCENP complex remains at the centromeres and fails to relocate to the central spindle. MKlp2 exerts dual control over Aurora B localization, because it is a binding partner for Aurora B, and furthermore for the phosphatase Cdc14A. Cdc14A can dephosphorylate INCENP and may contribute to its relocation to the central spindle in anaphase. We propose that MKlp2 is involved in the localization of Plk1, Aurora B, and Cdc14A to the central spindle during anaphase, and that the integration of signaling by these proteins is necessary for proper cytokinesis.  相似文献   
958.
The toxicity of two biorational insecticides, spinosad (Tracer) and methoxyfenozide (RH-2485), was tested against eggs, larvae, and pupae of the noctuid Spodoptera littoralis (Boisduval). In the first experiment, filter paper circles containing egg masses of two different age classes, young (<24 h old) and old (24-48 h old), were dipped in different concentrations of each insecticide diluted in either water or acetone. No ovicidal activity was recorded when insecticides were diluted in water. In contrast, when insecticides were diluted in acetone, both egg age classes generally showed a concentration-dependent response for both compounds. Mortality of larvae that hatched from both egg age classes was significantly increased, compared with control larvae, at all concentrations of both insecticides when diluted in water or acetone alike. The prevalence of mortality was similar with each insecticide. In the second experiment, third instars of S. littoralis were fed semisynthetic diet containing different concentrations of both insecticides. According to LC50 values, no significant differences were observed between spinosad (2.11 mg [AI]/kg diet) and methoxyfenozide (3.98 mg [AI]/kg diet) after 48 h of treatment, based on the overlap of 95% CL. Toxic effects on the mortality of pupae, adult emergence, and the prevalence of deformed adults after topical application on young pupae also were examined. Only methoxyfenozide caused pupal mortality and deformed adults. Our results suggest that spinosad and methoxyfenozide are potentially potent compounds for control of S. littoralis.  相似文献   
959.
A classical voltage-sensitive channel is tension sensitive—the kinetics of Shaker and S3–S4 linker deletion mutants change with membrane stretch (Tabarean, I.V., and C.E. Morris. 2002. Biophys. J. 82:2982–2994.). Does stretch distort the channel protein, producing novel channel states, or, more interestingly, are existing transitions inherently tension sensitive? We examined stretch and voltage dependence of mutant 5aa, whose ultra-simple activation (Gonzalez, C., E. Rosenman, F. Bezanilla, O. Alvarez, and R. Latorre. 2000. J. Gen. Physiol. 115:193–208.) and temporally matched activation and slow inactivation were ideal for these studies. We focused on macroscopic patch current parameters related to elementary channel transitions: maximum slope and delay of current rise, and time constant of current decline. Stretch altered the magnitude of these parameters, but not, or minimally, their voltage dependence. Maximum slope and delay versus voltage with and without stretch as well as current rising phases were well described by expressions derived for an irreversible four-step activation model, indicating there is no separate stretch-activated opening pathway. This model, with slow inactivation added, explains most of our data. From this we infer that the voltage-dependent activation path is inherently stretch sensitive. Simulated currents for schemes with additional activation steps were compared against datasets; this showed that generally, additional complexity was not called for. Because the voltage sensitivities of activation and inactivation differ, it was not possible to substitute depolarization for stretch so as to produce the same overall PO time course. What we found, however, was that at a given voltage, stretch-accelerated current rise and decline almost identically—normalized current traces with and without stretch could be matched by a rescaling of time. Rate-limitation of the current falling phase by activation was ruled out. We hypothesize, therefore, that stretch-induced bilayer decompression facilitates an in-plane expansion of the protein in both activation and inactivation. Dynamic structural models of this class of channels will need to take into account the inherent mechanosensitivity of voltage-dependent gating.  相似文献   
960.
Chemokines play an important role in immune and inflammatory responses by inducing migration and adhesion of leukocytes, and have also been reported to modulate osteoclast differentiation from hemopoietic precursor cells of the monocyte-macrophage lineage. In this study, we examined the effect of MIP-1 gamma, a C-C chemokine family member, on receptor activator of NF-kappa B ligand (RANKL)-stimulated osteoclast differentiation, survival, and activation. RANKL induced osteoclasts to dramatically increase production of MIP-1 gamma and to also express the MIP-1 gamma receptor CCR1, but had only minor effects on the related C-C chemokines MIP-1 alpha and RANTES. Neutralization of MIP-1 gamma with specific Ab reduced RANKL-stimulated osteoclast differentiation by 60-70%. Mature osteoclasts underwent apoptosis within 24 h after removal of RANKL, as shown by increased caspase 3 activity and DNA fragmentation. Apoptosis was reduced by the addition of exogenous MIP-1 gamma or RANKL, both of which increased NF-kappa B activation in osteoclasts. Neutralization studies showed that the prosurvival effect of RANKL was in part dependent on its ability to induce MIP-1 gamma. Finally, osteoclast activation for bone resorption was stimulated by MIP-1 gamma. Taken together, these results demonstrate that MIP-1 gamma plays an important role in the differentiation and survival of osteoclasts, most likely via an autocrine pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号