首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2452篇
  免费   211篇
  2663篇
  2023年   4篇
  2022年   18篇
  2021年   49篇
  2020年   17篇
  2019年   20篇
  2018年   32篇
  2017年   35篇
  2016年   76篇
  2015年   116篇
  2014年   131篇
  2013年   144篇
  2012年   218篇
  2011年   205篇
  2010年   151篇
  2009年   132篇
  2008年   141篇
  2007年   156篇
  2006年   136篇
  2005年   123篇
  2004年   147篇
  2003年   124篇
  2002年   128篇
  2001年   30篇
  2000年   20篇
  1999年   31篇
  1998年   39篇
  1997年   23篇
  1996年   19篇
  1995年   20篇
  1994年   20篇
  1993年   22篇
  1992年   18篇
  1991年   12篇
  1990年   11篇
  1989年   16篇
  1988年   7篇
  1987年   7篇
  1986年   9篇
  1985年   4篇
  1984年   4篇
  1983年   3篇
  1982年   7篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1978年   5篇
  1977年   4篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
排序方式: 共有2663条查询结果,搜索用时 15 毫秒
981.
982.
The relevance of endocytosis in plants against high turgor pressure has frequently been questioned on the basis of energetic considerations. Here, we examine the dynamics of the plasma membrane (PM) in turgid guard cells of Vicia faba by monitoring with confocal microscopy the fate of fluorescent styryl dyes (FM1-43, FM2-10 and FM4-64). As a second marker, we also observe the retrieval of a fluorescent chimaera of the K(+)-inward rectifying channel from Arabidopsis thaliana and the green fluorescent protein (KAT1::GFP). Analysis of cytoplasmic structures, which became labelled by the different styryl dyes, revealed that only FM4-64, the most hydrophobic dye, was a reliable marker of endocytosis, whereas the two other styryl dyes resulted also in an unspecific labelling of different cytoplasmic structures including mitochondria. Over some minutes of incubation in continuous presence of these dyes, endocytic vesicles in the cortical cytoplasm beneath the PM were fluorescently labelled. The identification is based on the observation that the size distribution of these structures is very similar to that of endocytic vesicles obtained from patch-clamp capacitance recordings. Also, these structures are frequently co-labelled with KAT1::GFP. Taken together, the data show that turgid guard cells undergo vigorous constitutive endocytosis and retrieve membrane including the K(+)-channel KAT1 from the PM via endocytic vesicles.  相似文献   
983.
Chromosome topology and genome size of selected actinomycetes species   总被引:7,自引:0,他引:7  
Information about the genome organization of actinomycetes species is restricted to a few genera: Corynebacterium, Mycobacterium, Rhodococcus, Saccharopolyspora and Streptomyces. Streptomyces species and Saccharopolyspora erythraea were shown to contain a single linear 8 Mb chromosome. In contrast, the Corynebacterium, Mycobacterium and Rhodococcus species studied were demonstrated to possess a smaller (3 Mb–6.5 Mb) single circular chromosome. To investigate whether linear chromosome topology and genome sizes above 7 Mb are unique features of Streptomyces and S. erythraea we have started to investigate the chromosome topology, the genome size and the status of accessory elements of additional actinomycetes species: Actinoplanes philippinensis, Amycolatopsis orientalis, Micromonospora chalcea, Nocardia asteroides, Rhodococcus opacus and Streptoverticillium abikoense. Our data which are based on PFGE experiments clearly suggest that large genome sizes and chromosome linearity are seen in mycelium forming actinomycetes genera. In addition we have identified large linear plasmids in Nocardia asteroides, Streptoverticillium abikoense and Rhodococcus opacus.  相似文献   
984.
Amphiphysin 2, encoded by BIN1, is a key factor for membrane sensing and remodelling in different cell types. Homozygous BIN1 mutations in ubiquitously expressed exons are associated with autosomal recessive centronuclear myopathy (CNM), a mildly progressive muscle disorder typically showing abnormal nuclear centralization on biopsies. In addition, misregulation of BIN1 splicing partially accounts for the muscle defects in myotonic dystrophy (DM). However, the muscle-specific function of amphiphysin 2 and its pathogenicity in both muscle disorders are not well understood. In this study we identified and characterized the first mutation affecting the splicing of the muscle-specific BIN1 exon 11 in a consanguineous family with rapidly progressive and ultimately fatal centronuclear myopathy. In parallel, we discovered a mutation in the same BIN1 exon 11 acceptor splice site as the genetic cause of the canine Inherited Myopathy of Great Danes (IMGD). Analysis of RNA from patient muscle demonstrated complete skipping of exon 11 and BIN1 constructs without exon 11 were unable to promote membrane tubulation in differentiated myotubes. Comparative immunofluorescence and ultrastructural analyses of patient and canine biopsies revealed common structural defects, emphasizing the importance of amphiphysin 2 in membrane remodelling and maintenance of the skeletal muscle triad. Our data demonstrate that the alteration of the muscle-specific function of amphiphysin 2 is a common pathomechanism for centronuclear myopathy, myotonic dystrophy, and IMGD. The IMGD dog is the first faithful model for human BIN1-related CNM and represents a mammalian model available for preclinical trials of potential therapies.  相似文献   
985.
The question whether nanoparticles can cross the skin barrier is highly debated. Even in intact skin rare events of deeper penetration have been reported, but technical limitations and possible artifacts require careful interpretation. In this study, horizontal scanning by 2‐photon microscopy (2 PM) of full‐thickness human skin samples placed in a lateral position yielded highly informative images for skin penetration studies of fluorescently tagged nanoparticles. Scanning of large fields of view allowed for detailed information on interfollicular and follicular penetration in tissue blocks without damaging the sample. Images in histomorphological correlation showed that 2P‐excited fluorescence signals of fluorescently tagged 20 and 200 nm polystyrene nanoparticles preferentially accumulated in the stratum corneum (SC) and in the upper part of vellus hair follicles (HFs). Rare events of deeper penetration in the SC and in the infundibulum of vellus HFs were observed at sites of high focal particle aggregations. Wide‐field 2 PM allows for imaging of nanoparticle penetration in large tissue blocks, whereas total internal reflection microscopy (TIRFM) enables selective detection of individual nanoparticles as well as clusters of nanoparticles in the SC and within the epidermal layer directly beneath the SC, thus confirming barrier crossing with high sensitivity.   相似文献   
986.
Sphingosine 1-phosphate (S1P) is the natural ligand for a specific family of G protein-coupled receptors (-Rs). The type 1 S1P-R (S1P(1)) is important for lymphocyte egress, and blood-borne S1P as the natural ligand for S1P(1) is involved in the maintenance of lymphocyte circulation. This report reveals that extracellular S1P was cleared by all tested primary cells and cell lines with exponential progression. Clearance of S1P, but not sphingosine (Sph) was inhibited with the protein phosphatase inhibitor sodium orthovanadate. Fluorescence microscopy and flow cytometry using fluorescently labeled S1P and Sph showed a major cellular uptake of Sph, but not S1P. HPLC-analyses with C17-Sph demonstrated that cellular Sph accumulation was transient in tested cell lines, but enduring in mouse splenocytes. Sub cellular fractionation resulted in dephosphorylation of S1P to Sph by nuclear, membrane, and cytosolic fractions. Degradation of Sph however only occurred in combined membrane and cytosolic fractions. Inhibitors for Sph kinases 1/2, ceramide synthase, and S1P-lyase, as well as S1P-lyase deficiency did not block clearance of extracellular S1P. In vivo experiments revealed a transient increase in plasma S1P levels after single intravenous injection into C57BL/6 mice. This exogenously added S1P was cleared within 15-30 min in contrast to ex vivo incubation of whole blood which required more than 8 h for comparable clearance from plasma. Our data thus show that extracellular S1P is dephosphorylated and subsequently converted by cells, which appears to be important for clearance of the signaling molecule S1P in the local tissue environment after infections or injuries.  相似文献   
987.
Melanoma progresses as a multistep process where the thickness of the lesion and depth of tumor invasion are the best prognostic indicators of clinical outcome. Degradation of the interstitial collagens in the extracellular matrix is an integral component of tumor invasion and metastasis, and much of this degradation is mediated by collagenase-1 (MMP-1), a member of the matrix metalloproteinase (MMP) family. MMP-1 levels increase during melanoma progression where they are associated with shorter disease-free survival. The Ras/Raf/MEK/ERK mitogen-activated protein kinase (MAPK) pathway is a major regulator of melanoma cell proliferation. Recently, BRAF has been identified as a common site of activating mutations, and, although many reports focus on its growth-promoting effects, this pathway has also been implicated in progression toward metastatic disease. In this study, we describe four melanoma cell lines that produce high levels of MMP-1 constitutively. In each cell line the Ras/Raf/MEK/ERK pathway is constitutively active and is the dominant pathway driving the production of MMP-1. Activation of this pathway arises due to either an activating mutation in BRAF (three cell lines) or autocrine fibroblast growth factor signaling (one cell line). Furthermore, blocking MEK/ERK activity inhibits melanoma cell proliferation and abrogates collagen degradation, thus decreasing their metastatic potential. Importantly, this inhibition of invasive behavior can occur in the absence of any detectable changes in cell proliferation and survival. Thus, constitutive activation of this MAPK pathway not only promotes the increased proliferation of melanoma cells but is also important for the acquisition of an invasive phenotype.  相似文献   
988.
Molluscs can conjugate a variety of steroids to form fatty acid esters. In this work, the freshwater ramshorn snail Marisa cornuarietis was used to investigate sex differences in endogenous levels of esterified steroids. Testosterone and estradiol were mainly found in the esterified form in the digestive gland/gonad complex of M. cornuarietis, and males had higher levels of esterified steroids than females (4-10-fold). Additionally, the ability of several xenobiotics, namely tributyltin (TBT), methyltestosterone (MT) and fenarimol (FEN) to interfere with the esterification of testosterone and estradiol was investigated. All three compounds induced imposex - appearance of male sexual characteristics in females. Exposure to TBT led to a decrease in both esterified testosterone (60-85%) and estradiol (16-53%) in females after 100 days exposure, but had no effect on males. Exposure to FEN and MT did not alter levels of esterified steroids in males or in females, although exposed females developed imposex after 150 days exposure. The decrease in esterified steroids by TBT could not be directly linked with a decrease in microsomal acyl-CoA:testosterone acyltransferase (ATAT) activity, which catalyzes the esterification of steroids. In fact, ATAT activity was marginally induced in organisms exposed to TBT for 50 days (1.3-fold), and significantly induced in males and females exposed to MT for 50 days (1.8- and 1.5-fold, respectively), whereas no effect on ATAT activity was observed after 150 days exposure.  相似文献   
989.
Orthopedic implant failure due to aseptic loosening and mechanical instability remains a major problem in total joint replacement. Improving osseointegration at the bone-implant interface may reduce micromotion and loosening. Bone sialoprotein (BSP) has been shown to enhance bone formation when coated onto titanium femoral implants and in rat calvarial defect models. However, the most appropriate method of BSP coating, the necessary level of BSP coating, and the effect of BSP coating on cell behavior remain largely unknown. In this study, BSP was covalently coupled to titanium surfaces via an aminosilane linker (APTES), and its properties were compared to BSP applied to titanium via physisorption and untreated titanium. Cell functions were examined using primary human osteoblasts (hOBs) and L929 mouse fibroblasts. Gene expression of specific bone turnover markers at the RNA level was detected at different intervals. Cell adhesion to titanium surfaces treated with BSP via physisorption was not significantly different from that of untreated titanium at any time point, whereas BSP application via covalent coupling caused reduced cell adhesion during the first few hours in culture. Cell migration was increased on titanium disks that were treated with higher concentrations of BSP solution, independent of the coating method. During the early phases of hOB proliferation, a suppressive effect of BSP was observed independent of its concentration, particularly when BSP was applied to the titanium surface via physisorption. Although alkaline phosphatase activity was reduced in the BSP-coated titanium groups after 4 days in culture, increased calcium deposition was observed after 21 days. In particular, the gene expression level of RUNX2 was upregulated by BSP. The increase in calcium deposition and the stimulation of cell differentiation induced by BSP highlight its potential as a surface modifier that could enhance the osseointegration of orthopedic implants. Both physisorption and covalent coupling of BSP are similarly effective, feasible methods, although a higher BSP concentration is recommended.  相似文献   
990.
Protein biochips have a great potential in future parallel processing of complex samples as a research tool and in diagnostics. For the generation of protein biochips, highly automated technologies have been developed for cDNA expression library production, high throughput protein expression, large scale analysis of proteins, and protein microarray generation. Using this technology, we present here a strategy to identify potential autoantigens involved in the pathogenesis of alopecia areata, an often chronic disease leading to the rapid loss of scalp hair. Only little is known about the putative autoantigen(s) involved in this process. By combining protein microarray technology with the use of large cDNA expression libraries, we profiled the autoantibody repertoire of sera from alopecia areata patients against a human protein array consisting of 37,200 redundant, recombinant human proteins. The data sets obtained from incubations with patient sera were compared with control sera from clinically healthy persons and to background incubations with anti-human IgG antibodies. From these results, a smaller protein subset was generated and subjected to qualitative and quantitative validation on highly sensitive protein microarrays to identify novel alopecia areata-associated autoantigens. Eight autoantigens were identified by protein chip technology and were successfully confirmed by Western blot analysis. These autoantigens were arrayed on protein microarrays to generate a disease-associated protein chip. To confirm the specificity of the results obtained, sera from patients with psoriasis or hand and foot eczema as well as skin allergy were additionally examined on the disease-associated protein chip. By using alopecia areata as a model for an autoimmune disease, our investigations show that the protein microarray technology has potential for the identification and evaluation of autoantigens as well as in diagnosis such as to differentiate alopecia areata from other skin diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号