首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2834篇
  免费   236篇
  3070篇
  2022年   20篇
  2021年   52篇
  2020年   19篇
  2019年   22篇
  2018年   34篇
  2017年   37篇
  2016年   83篇
  2015年   123篇
  2014年   138篇
  2013年   159篇
  2012年   235篇
  2011年   226篇
  2010年   165篇
  2009年   141篇
  2008年   165篇
  2007年   186篇
  2006年   159篇
  2005年   136篇
  2004年   165篇
  2003年   135篇
  2002年   142篇
  2001年   50篇
  2000年   29篇
  1999年   38篇
  1998年   42篇
  1997年   26篇
  1996年   27篇
  1995年   23篇
  1994年   27篇
  1993年   26篇
  1992年   21篇
  1991年   24篇
  1990年   16篇
  1989年   19篇
  1988年   9篇
  1987年   9篇
  1986年   13篇
  1985年   7篇
  1984年   10篇
  1983年   6篇
  1982年   9篇
  1981年   7篇
  1980年   6篇
  1979年   10篇
  1978年   8篇
  1977年   6篇
  1975年   7篇
  1973年   6篇
  1969年   6篇
  1968年   5篇
排序方式: 共有3070条查询结果,搜索用时 15 毫秒
41.
Waxes are components of the cuticle covering the aerial organs of plants. Accumulation of waxes has previously been associated with protection against water loss, therefore contributing to drought tolerance. However, not much information is known about the function of individual wax components during water deficit. We studied the role of wax ester synthesis during drought. The wax ester load on Arabidopsis leaves and stems was increased during water deficiency. Expression of three genes, WSD1, WSD6 and WSD7 of the wax ester synthase/diacylglycerol acyltransferase (WS/DGAT or WSD) family was induced during drought, salt stress and abscisic acid treatment. WSD1 has previously been identified as the major wax ester synthase of stems. wsd1 mutants have shown reduced wax ester coverage on leaves and stems during normal or drought condition, while wax ester loads of wsd6, wsd7 and of the wsd6wsd7 double mutant were unchanged. The growth and relative water content of wsd1 plants were compromised during drought, while leaf water loss of wsd1 was increased. Enzyme assays with recombinant proteins expressed in insect cells revealed that WSD6 and WSD7 contain wax ester synthase activity, albeit with different substrate specificity compared with WSD1. WSD6 and WSD7 localize to the endoplasmic reticulum (ER)/Golgi. These results demonstrated that WSD1 is involved in the accumulation of wax esters during drought, while WSD6 and WSD7 might play other specific roles in wax ester metabolism during stress.  相似文献   
42.
43.
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by mutations in COL7A1 resulting in reduced or absent type VII collagen, aberrant anchoring fibril formation and subsequent dermal-epidermal fragility. Here, we identify a significant decrease in PLOD3 expression and its encoded protein, the collagen modifying enzyme lysyl hydroxylase 3 (LH3), in RDEB. We show abundant LH3 localising to the basement membrane in normal skin which is severely depleted in RDEB patient skin. We demonstrate expression is in-part regulated by endogenous type VII collagen and that, in agreement with previous studies, even small reductions in LH3 expression lead to significantly less secreted LH3 protein. Exogenous type VII collagen did not alter LH3 expression in cultured RDEB keratinocytes and we show that RDEB patients receiving bone marrow transplantation who demonstrate significant increase in type VII collagen do not show increased levels of LH3 at the basement membrane. Our data report a direct link between LH3 and endogenous type VII collagen expression concluding that reduction of LH3 at the basement membrane in patients with RDEB will likely have significant implications for disease progression and therapeutic intervention.  相似文献   
44.
45.
46.
Aim Atmospheric CO2 concentrations depend, in part, on the amount of biomass locked up in terrestrial vegetation. Information on the causes of a broad‐scale vegetation transition and associated loss of biomass is thus of critical interest for understanding global palaeoclimatic changes. Pollen records from the north‐eastern Tibet‐Qinghai Plateau reveal a dramatic and extensive forest decline beginning c. 6000 cal. yr bp . The aim of this study is to elucidate the causes of this regional‐scale change from high‐biomass forest to low‐biomass steppe on the Tibet‐Qinghai Plateau during the second half of the Holocene. Location Our study focuses on the north‐eastern Tibet‐Qinghai Plateau. Stratigraphical data used are from Qinghai Lake (3200 m a.s.l., 36°32′–37°15′ N, 99°36′–100°47′ E). Methods We apply a modern pollen‐precipitation transfer function from the eastern and north‐eastern Tibet‐Qinghai Plateau to fossil pollen spectra from Qinghai Lake to reconstruct annual precipitation changes during the Holocene. The reconstructions are compared to a stable oxygen‐isotope record from the same sediment core and to results from two transient climate model simulations. Results The pollen‐based precipitation reconstruction covering the Holocene parallels moisture changes inferred from the stable oxygen‐isotope record. Furthermore, these results are in close agreement with simulated model‐based past annual precipitation changes. Main conclusions In the light of these data and the model results, we conclude that it is not necessary to attribute the broad‐scale forest decline to human activity. Climate change as a result of changes in the intensity of the East Asian Summer Monsoon in the mid‐Holocene is the most parsimonious explanation for the widespread forest decline on the Tibet‐Qinghai Plateau. Moreover, climate feedback from a reduced forest cover accentuates increasingly drier conditions in the area, indicating complex vegetation–climate interactions during this major ecological change.  相似文献   
47.
The anode/electrolyte interface behavior, and by extension, the overall cell performance of sodium-ion batteries is determined by a complex interaction of processes that occur at all components of the electrochemical cell across a wide range of size- and timescales. Single-scale studies may provide incomplete insights, as they cannot capture the full picture of this complex and intertwined behavior. Broad, multiscale studies are essential to elucidate these processes. Within this perspectives article, several analytical and theoretical techniques are introduced, and described how they can be combined to provide a more complete and comprehensive understanding of sodium-ion battery (SIB) performance throughout its lifetime, with a special focus on the interfaces of hard carbon anodes. These methods target various length- and time scales, ranging from micro to nano, from cell level to atomistic structures, and account for a broad spectrum of physical and (electro)chemical characteristics. Specifically, how mass spectrometric, microscopic, spectroscopic, electrochemical, thermodynamic, and physical methods can be employed to obtain the various types of information required to understand battery behavior will be explored. Ways are then discussed how these methods can be coupled together in order to elucidate the multiscale phenomena at the anode interface and develop a holistic understanding of their relationship to overall sodium-ion battery function.  相似文献   
48.
The role of Snm1, Rev3 and Rad51 in S-phase after cisplatin (CDDP) DNA treatment has been examined. When isogenic deletion mutants snm1 delta, rev3 delta and rad51 delta were arrested in G1 and treated with doses of CDDP causing significant lethality (<20% survival in the mutant strains), they progressed through S-phase with normal kinetics. The mutants arrested in G2 like wild-type cells, however they did not exit the arrest and reenter the cell cycle. This finding demonstrates that these genes are not required to allow DNA replication in the presence of damage. Therefore, Snm1, Rev3 and Rad51 may act after S to allow repair. At high levels of damage (<40% survival in wild-type cells) S-phase was slowed in a MEC1-dependent fashion. The cross-link incision kinetics of snm1 delta and rev3 delta mutants were also examined; both showed no deficiencies in incision of cross-linked DNA.  相似文献   
49.
Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A-TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A-TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation.  相似文献   
50.
Objective: To develop improved predictive regression equations for body fat content derived from common anthropometric measurements. Research Methods and Procedures: 117 healthy German subjects, 46 men and 71 women, 26 to 67 years of age, from two different studies were assigned to a validation and a cross‐validation group. Common anthropometric measurements and body composition by DXA were obtained. Equations using anthropometric measurements predicting body fat mass (BFM) with DXA as a reference method were developed using regression models. Results: The final best predictive sex‐specific equations combining skinfold thicknesses (SF), circumferences, and bone breadth measurements were as follows: BFMNew (kg) for men = ?40.750 + [(0.397 × waist circumference) + [6.568 × (log triceps SF + log subscapular SF + log abdominal SF)]] and BFMNew (kg) for women = ?75.231 + [(0.512 × hip circumference) + [8.889 × (log chin SF + log triceps SF + log subscapular SF)] + (1.905 × knee breadth)]. The estimates of BFM from both validation and cross‐validation had an excellent correlation, showed excellent correspondence to the DXA estimates, and showed a negligible tendency to underestimate percent body fat in subjects with higher BFM compared with equations using a two‐compartment (Durnin and Womersley) or a four‐compartment (Peterson) model as the reference method. Discussion: Combining skinfold thicknesses with circumference and/or bone breadth measures provide a more precise prediction of percent body fat in comparison with established SF equations. Our equations are recommended for use in clinical or epidemiological settings in populations with similar ethnic background.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号