首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   19篇
  2023年   2篇
  2021年   3篇
  2020年   4篇
  2019年   9篇
  2018年   5篇
  2017年   7篇
  2016年   15篇
  2015年   13篇
  2014年   17篇
  2013年   23篇
  2012年   27篇
  2011年   32篇
  2010年   16篇
  2009年   19篇
  2008年   19篇
  2007年   24篇
  2006年   35篇
  2005年   37篇
  2004年   28篇
  2003年   24篇
  2002年   24篇
  2001年   8篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   6篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1984年   1篇
  1976年   1篇
排序方式: 共有423条查询结果,搜索用时 265 毫秒
41.

Background

Evidence from animal studies indicates the importance of an interaction between the sympathetic nervous system and the endothelium for cardiovascular regulation. However the interaction between these two systems remains largely unexplored in humans. The aim of this study was to investigate whether directly recorded sympathetic vasoconstrictor outflow is related to a surrogate marker of endothelial function in healthy individuals.

Methods and Results

In 10 healthy normotensive subjects (3 f/7 m), (age 37±11 yrs), (BMI 24±3 kg/m2) direct recordings of sympathetic action potentials to the muscle vascular bed (MSNA) were performed and endothelial function estimated with the Reactive Hyperaemia- Peripheral Arterial Tonometry (RH-PAT) technique. Blood samples were taken and time spent on leisure-time physical activities was estimated. In all subjects the rate between resting flow and the maximum flow, the Reactive Hyperemic index (RH-PAT index), was within the normal range (1,9–3,3) and MSNA was as expected for age and gender (13–44 burst/minute). RH-PAT index was inversely related to MSNA (r = −0.8, p = 0.005). RH-PAT index and MSNA were reciprocally related to time (h/week) spent on physical activity (p = 0.005 and p = 0.006 respectively) and platelet concentration (PLT) (p = 0.02 and p = 0.004 respectively).

Conclusions

Our results show that sympathetic nerve activity is related to a surrogate marker of endothelial function in healthy normotensive individuals, indicating that sympathetic outflow may be modulated by changes in endothelial function. In this study time spent on physical activity is identified as a predictor of sympathetic nerve activity and endothelial function in a group of healthy individuals. The results are of importance in understanding mechanisms underlying sympathetic activation in conditions associated with endothelial dysfunction and emphasise the importance of a daily exercise routine for maintenance of cardiovascular health.  相似文献   
42.
Endothelin-1 (ET-1) is a potent endothelium-derived vasoconstrictor, which also stimulates insulin release. The aim of the present study was to evaluate whether exogenously administered ET-1 affected pancreatic islet blood flow in vivo in rats and the islet arteriolar reactivity in vitro in mice. Furthermore, we aimed to determine the ET-receptor subtype that was involved in such responses. When applying a microsphere technique for measurements of islet blood perfusion in vivo, we found that ET-1 (5 nmol/kg) consistently and markedly decreased total pancreatic and especially islet blood flow, despite having only minor effects on blood pressure. Neither endothelin A (ET(A)) receptor (BQ-123) nor endothelin-B (ET(B)) receptor (BQ-788) antagonists, alone or in combination, could prevent this reduction in blood flow. To avoid confounding interactions in vivo, we also examined the arteriolar vascular reactivity in isolated, perfused mouse islets. In the latter preparation, we demonstrated a dose-dependent constriction in response to ET-1. Administration of BQ-123 prevented this, whereas BQ-788 induced a right shift in the response. In conclusion, the pancreatic islet vasculature is highly sensitive to exogenous ET-1, which mediates its effect mainly through ET(A) receptors.  相似文献   
43.
Dendritic cells (DCs) can be activated by signaling via pathogen receptors, by interaction with activated T cells or by exposure to inflammatory mediators. Clearance of apoptotic cells by DCs is generally considered a silent event that is not associated with an inflammatory response. Necrotic cell death, in contrast, leads to induction of inflammation. However, emerging data challenge the view of apoptotic cells as inherently nonimmunogenic. In this study, we report that the activation state of the apoptotic cell may determine whether the exposed DC becomes activated and rendered proficient in Ag presentation. We show that coculture with activated, but not resting, apoptotic PBMCs leads to up-regulation of surface expression of the costimulatory molecules CD80, CD83, and CD86 in human DCs as well as release of proinflammatory cytokines. Furthermore, we show that DCs exposed to allogeneic, activated apoptotic PBMCs induce proliferation and IFN-gamma production in autologous T cells. Together, these findings show that activated apoptotic PBMCs per se provide an activation/maturation signal to DCs, suggesting that activated apoptotic PBMCs possess endogenous adjuvant properties.  相似文献   
44.
Cidofovir (HPMPC) is a broad-spectrum anti-viral agent whose potential, particularly in biodefense scenarios, is limited by its low oral bioavailability. Two prodrugs (3 and 4) created by conjugating ethylene glycol-linked amino acids (L-Val, L-Phe) with the cyclic form of cidofovir (cHPMPC) via a P-O ester bond were synthesized and their pH-dependent stability (3 and 4), potential for in vivo reconversion to drug (3), and oral bioavailability (3) were evaluated. The prodrugs were stable in buffer between pH 3 and 5, but underwent rapid hydrolysis in liver (t(1/2) = 3.7 min), intestinal (t(1/2) = 12.5 min), and Caco-2 cell homogenates (t(1/2) = 20.2 min). In vivo (rat), prodrug 3 was >90% reconverted to cHPMPC. The prodrug was 4x more active than ganciclovir (IC50 value, 0.68 microM vs 3.0 microM) in a HCMV plaque reduction assay. However, its oral bioavailability in a rat model was similar to the parent drug. The contrast between the promising activation properties and unenhanced transport of the prodrug is briefly discussed.  相似文献   
45.
Calpains are cytoplasmic Ca(2+)-regulated cysteine proteases that may regulate insulin-like growth factor (IGF)-independent actions of insulin-like growth factor binding proteins (IGFBPs) through IGFBP proteolysis. In this study, [(125)I]-labeled IGFBP-2 and -3, but not IGFBP-1, were proteolyzed by Ca(2+)-activated m-calpain in vitro. Degradation of higher concentrations of the recombinant proteins IGFBP-2 and -3 by m-calpain was dose-dependent, but was terminated within 20 min by autolysis. By subjecting proteolytic fragments to N-terminal amino acid sequence analysis, the primary cleavage sites in IGFBP-2 and -3 were localized to the non-conserved central linker regions. Using the biosensor technique, in vitro binding of m-calpain to IGFBP-3 was demonstrated to be a Ca(2+)-dependent reaction with a rapid on/off rate.  相似文献   
46.
Activation of astrocytes accompanies many brain pathologies. Reactive astrocytes have a beneficial role in acute neurotrauma but later on might inhibit regeneration. 2D-gel electrophoresis and mass spectrometry were applied to study the proteome difference in denervated hippocampus in wildtype mice and mice lacking intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin (GFAP-/-Vim-/-) that show attenuated reactive gliosis and enhanced posttraumatic regeneration. Proteomic data and immunohistochemical analyses showed upregulation of the adapter protein 14-3-3 four days postlesion and suggested that 14-3-3 upregulation after injury is triggered by reactive gliosis. Culture-derived isotope tags (CDIT) and mass spectrometry demonstrated that 14-3-3 epsilon was the major isoform upregulated in denervated hippocampus and that its upregulation was attenuated in GFAP-/-Vim-/- mice and thus most likely connected to reactive gliosis.  相似文献   
47.
IntroductionThe incidence and progression of many autoimmune diseases are sex-biased, which might be explained by the immunomodulating properties of endocrine hormones. Treatment with estradiol potently inhibits experimental autoimmune arthritis. Interleukin-17-producing T helper cells (Th17) are key players in several autoimmune diseases, particularly in rheumatoid arthritis. The aim of this study was to investigate the effects of estrogen on Th17 cells in experimental arthritis.MethodsOvariectomized DBA/1 mice treated with 17β-estradiol (E2) or placebo were subjected to collagen-induced arthritis (CIA), and arthritis development was assessed. Th17 cells in joints and lymph nodes were studied by flow cytometry. Lymph node Th17 cells were also examined in ovariectomized estrogen receptor α–knockout mice (ERα−/−) and wild-type littermates, treated with E2 or placebo and subjected to antigen-induced arthritis.ResultsE2-treated mice with established CIA showed reduced severity of arthritis and fewer Th17 cells in joints compared with controls. Interestingly, E2-treated mice displayed increased Th17 cells in lymph nodes during the early phase of the disease, dependent on ERα. E2 increased the expression of C-C chemokine receptor 6 (CCR6) on lymph node Th17 cells as well as the expression of the corresponding C-C chemokine ligand 20 (CCL20) within lymph nodes.ConclusionsThis is the first study in which the effects of E2 on Th17 cells have been characterized in experimental autoimmune arthritis. We report that E2 treatment results in an increase of Th17 cells in lymph nodes during the early phase of arthritis development, but leads to a decrease of Th17 in joints during established arthritis. Our data suggest that this may be caused by interference with the CCR6-CCL20 pathway, which is important for Th17 cell migration. This study contributes to the understanding of the role of estrogen in the development of autoimmune arthritis and opens up new fields for research concerning the sex bias in autoimmune disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0548-y) contains supplementary material, which is available to authorized users.  相似文献   
48.
The initial response of individuals to human‐induced environmental change is often behavioural. This can improve the performance of individuals under sudden, large‐scale perturbations and maintain viable populations. The response can also give additional time for genetic changes to arise and, hence, facilitate adaptation to new conditions. On the other hand, maladaptive responses, which reduce individual fitness, may occur when individuals encounter conditions that the population has not experienced during its evolutionary history, which can decrease population viability. A growing number of studies find human disturbances to induce behavioural responses, both directly and by altering factors that influence fitness. Common causes of behavioural responses are changes in the transmission of information, the concentration of endocrine disrupters, the availability of resources, the possibility of dispersal, and the abundance of interacting species. Frequent responses are alterations in habitat choice, movements, foraging, social behaviour and reproductive behaviour. Behavioural responses depend on the genetically determined reaction norm of the individuals, which evolves over generations. Populations first respond with individual behavioural plasticity, whereafter changes may arise through innovations and the social transmission of behavioural patterns within and across generations, and, finally, by evolution of the behavioural response over generations. Only a restricted number of species show behavioural adaptations that make them thrive in severely disturbed environments. Hence, rapid human‐induced disturbances often decrease the diversity of native species, while facilitating the spread of invasive species with highly plastic behaviours. Consequently, behavioural responses to human‐induced environmental change can have profound effects on the distribution, adaptation, speciation and extinction of populations and, hence, on biodiversity. A better understanding of the mechanisms of behavioural responses and their causes and consequences could improve our ability to predict the effects of human‐induced environmental change on individual species and on biodiversity.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号