首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4882篇
  免费   477篇
  5359篇
  2022年   38篇
  2021年   57篇
  2020年   49篇
  2019年   57篇
  2018年   57篇
  2017年   81篇
  2016年   97篇
  2015年   157篇
  2014年   207篇
  2013年   223篇
  2012年   297篇
  2011年   271篇
  2010年   194篇
  2009年   172篇
  2008年   247篇
  2007年   218篇
  2006年   195篇
  2005年   216篇
  2004年   219篇
  2003年   213篇
  2002年   178篇
  2001年   181篇
  2000年   151篇
  1999年   145篇
  1998年   81篇
  1997年   85篇
  1996年   62篇
  1995年   45篇
  1994年   66篇
  1993年   47篇
  1992年   88篇
  1991年   75篇
  1990年   74篇
  1989年   71篇
  1988年   58篇
  1987年   42篇
  1986年   40篇
  1985年   68篇
  1984年   44篇
  1983年   39篇
  1982年   40篇
  1981年   26篇
  1980年   25篇
  1979年   42篇
  1978年   24篇
  1977年   23篇
  1976年   25篇
  1974年   29篇
  1973年   23篇
  1972年   22篇
排序方式: 共有5359条查询结果,搜索用时 0 毫秒
131.
We present a likelihood method for estimating codon usage bias parameters along the lineages of a phylogeny. The method is an extension of the classical codon-based models used for estimating dN/dS ratios along the lineages of a phylogeny. However, we add one extra parameter for each lineage: the selection coefficient for optimal codon usage (S), allowing joint maximum likelihood estimation of S and the dN/dS ratio. We apply the method to previously published data from Drosophila melanogaster, Drosophila simulans, and Drosophila yakuba and show, in accordance with previous results, that the D. melanogaster lineage has experienced a reduction in the selection for optimal codon usage. However, the D. melanogaster lineage has also experienced a change in the biological mutation rates relative to D. simulans, in particular, a relative reduction in the mutation rate from A to G and an increase in the mutation rate from C to T. However, neither a reduction in the strength of selection nor a change in the mutational pattern can alone explain all of the data observed in the D. melanogaster lineage. For example, we also confirm previous results showing that the Notch locus has experienced positive selection for previously classified unpreferred mutations.  相似文献   
132.
Pediatric liver disease (PLD) is a major cause of severe morbidity and prolonged hospitalizations in children. Stratifying patients in terms of prognosis remains challenging. The limited knowledge about molecular mechanisms causing and accompanying PLD remains the main obstacle in a search for reliable prognostic biomarkers. A systematic search of MEDLINE via PubMed and Embase via OVID was conducted on studies published between August 2007 and August 2017. Molecular markers with a prognostic potential in terms of survival, need for liver transplantation or disease progression/regression were selected. In general, identified studies were single center smaller case-control studies or case series with a low level of evidence and a high risk of bias. Only 23 studies comprising 898 patients could be included, mostly focusing on biliary atresia, non-alcoholic fatty liver disease, viral hepatitis, and LT; and markers related to morphogenesis and fibrosis. Furthermore, molecular markers in metabolic pathways and inflammation shown to be relevant, however requiring further validation. Hence, further biological and clinical studies are needed to gain greater molecular insight into PLD.  相似文献   
133.
134.
Modelling of human disease in genetically engineered pigs provides unique possibilities in biomedical research and in studies of disease intervention. Establishment of methodologies that allow efficient gene insertion by non-viral gene carriers is an important step towards development of new disease models. In this report, we present transgenic pigs created by Sleeping Beauty DNA transposition in primary porcine fibroblasts in combination with somatic cell nuclear transfer by handmade cloning. Göttingen minipigs expressing green fluorescent protein are produced by transgenesis with DNA transposon vectors carrying the transgene driven by the human ubiquitin C promoter. These animals carry multiple copies (from 8 to 13) of the transgene and show systemic transgene expression. Transgene-expressing pigs carry both transposase-catalyzed insertions and at least one copy of randomly inserted plasmid DNA. Our findings illustrate critical issues related to DNA transposon-directed transgenesis, including coincidental plasmid insertion and relatively low Sleeping Beauty transposition activity in porcine fibroblasts, but also provide a platform for future development of porcine disease models using the Sleeping Beauty gene insertion technology.  相似文献   
135.
In patients with hyperkalemic periodic paralysis (HyperKPP), attacks of muscle weakness or paralysis are triggered by K(+) ingestion or rest after exercise. Force can be restored by muscle work or treatment with β(2)-adrenoceptor agonists. A missense substitution corresponding to a mutation in the skeletal muscle voltage-gated Na(+) channel (Na(v)1.4, Met1592Val) causing human HyperKPP was targeted into the mouse SCN4A gene (mutants). In soleus muscles prepared from these mutant mice, twitch, tetanic force, and endurance were markedly reduced compared with soleus from wild type (WT), reflecting impaired excitability. In mutant soleus, contractility was considerably more sensitive than WT soleus to inhibition by elevated [K(+)](o). In resting mutant soleus, tetrodotoxin (TTX)-suppressible (22)Na uptake and [Na(+)](i) were increased by 470 and 58%, respectively, and membrane potential was depolarized (by 16 mV, P < 0.0001) and repolarized by TTX. Na(+),K(+) pump-mediated (86)Rb uptake was 83% larger than in WT. Salbutamol stimulated (86)Rb uptake and reduced [Na(+)](i) both in mutant and WT soleus. Stimulating Na(+),K(+) pumps with salbutamol restored force in mutant soleus and extensor digitorum longus (EDL). Increasing [Na(+)](i) with monensin also restored force in soleus. In soleus, EDL, and tibialis anterior muscles of mutant mice, the content of Na(+),K(+) pumps was 28, 62, and 33% higher than in WT, respectively, possibly reflecting the stimulating effect of elevated [Na(+)](i) on the synthesis of Na(+),K(+) pumps. The results confirm that the functional disorders of skeletal muscles in HyperKPP are secondary to increased Na(+) influx and show that contractility can be restored by acute stimulation of the Na(+),K(+) pumps. Calcitonin gene-related peptide (CGRP) restored force in mutant soleus but caused no detectable increase in (86)Rb uptake. Repeated excitation and capsaicin also restored contractility, possibly because of the release of endogenous CGRP from nerve endings in the isolated muscles. These observations may explain how mild exercise helps locally to prevent severe weakness during an attack of HyperKPP.  相似文献   
136.
To study the influence of soil moisture on phosphorus (P) depletion in the rhizosphere, maize (Zea mays cv. Trak) was pre-grown in vermiculite filled-PVC tubes for 9 days and then the plants with the tubes were transplanted into soil columns maintained at two soil moisture levels () of 0.14 and 0.20 cm3 cm–3 for 10 days. The soil columns were separated at 1 cm depth by a nylon screen of 53 m inner mesh size, into 1 cm soil layer above and 3 cm soil column below screen. A root mat developed over the screen, but root hairs only could penetrate it. Regardless of the soil moisture level in the columns, and adequate and equal water and nutrients supply was maintained via wicks from an external nutrient solution to the plant roots in vermiculite. After 10 days, the soil columns were separated from the root mats, quickly frozen in liquid nitrogen and sliced into thin layers (0.2mm) using a refrigerated microtome to give soil samples at defined distances from the root mats for analyses. Lower soil moisture (=0.14) resulted in narrower and steeper depletion profile of 0.5 M NaHCO3 extractable P (NaHCO3-Pi) as compared to higher soil moisture (=0.20). Depletion of P in soil solution in the immediate vicinity of root mats did not differ much but the extension of the depletion zones was 0.10 cm at =0.14 and 0.20 cm at =0.20. The depletion up to 0.05cm with =0.14 and up to 0.07 cm with =0.20 was uniform, and may be attributed to the depletion in the root hair zone. Beyond the root hair zones, the theory of diffusion and mass flow was able to explain the observed differences in shape and extent of the P depletion profiles at the two soil moisture levels.  相似文献   
137.
Chromosome terminal, complex repeats in the dipteran Chironomus pallidivittatus show rapid concerted evolution during which there is remarkably efficient homogenization of the repeat units within and between chromosome ends. It has been shown previously that gene conversion is likely to be an important component during these changes. The sequence evolution could be a result of different processes—exchanges between repeats in the tandem array as well as information transfer between units in different chromosomes—and is therefore difficult to analyze in detail. In this study the concerted evolution of a region present only once per chromosome, at the junction between the telomeric complex repeats and the subtelomeric DNA was therefore investigated in the two sibling species C. pallidivittatus and C. tentans. Material from individual microdissected chromosome ends was used, as well as clones from bulk genomic DNA. On the telomeric side of the border pronounced species-specific sequence differences were observed, the patterns being similar for clones of different origin within each species. Mutations had been transmitted efficiently between chromosomes also when adjoining, more distally localized DNA showed great differences in sequence, suggesting that gene conversion had taken place. The evolving telomeric region bordered proximally to subtelomeric DNA with high evolutionary constancy. More proximally localized, subtelomeric DNA evolved more rapidly and showed heterogeneity between species and chromosomes. Received: 24 September 1997 / Accepted: 24 November 1997  相似文献   
138.
An intron in a ribosomal protein gene from Tetrahymena   总被引:10,自引:0,他引:10       下载免费PDF全文
We have cloned and sequenced a single copy gene encoding a ribosomal protein from the ciliate Tetrahymena thermophila. The gene product was identified as ribosomal protein S25 by comparison of the migration in two-dimensional polyacrylamide gels of the protein synthesized by translation in vitro of hybrid-selected mRNA and authentic ribosomal proteins. The proteins show strong homology to ribosomal protein S12 from Escherichia coli. The coding region of the gene is interrupted by a 979-bp intron 68 bp downstream of the translation start. This is the first intron in a protein encoding gene of a ciliate to be described at the nucleotide sequence level. The intron obeys the GT/AG rule for splice junctions of nuclear mRNA introns from higher eukaryotes but lacks the pyrimidine stretch usually found in the immediate vicinity of the 3' splice junction. The structure of the intron and the fact that it is found together with the well described self-splicing rRNA intron is discussed in relation to the evolution of RNA splicing.  相似文献   
139.

Background

Low vitamin D status may be pronounced in Arctic populations due to limited sun exposure and decreasing intake of traditional food.

Objective

To investigate serum 25(OH)D3 as a measure of vitamin D status among adult Inuit in Greenland, predictors of low serum 25(OH)D3 concentrations and the trend from 1987 to 2005–2010.

Design

A total of 2877 randomly selected Inuit (≥18 years) from the Inuit Health in Transition study were included. A sub-sample (n = 330) donated a blood sample in 1987 which allowed assessment of time trends in vitamin D status.

Results

The geometric mean serum 25(OH)D3 (25[OH]D2 concentrations were negligible and not reported) in 2005–2010 was lowest among the 18–29 year old individuals (30.7 nmol/L; 95% CI: 29.7; 31.7) and increased with age. In all age-groups it decreased from 1987 to 2005–2010 (32%–58%). Low 25(OH)D3 concentrations (<50 nmol/L) were present in 77% of the 18–29 year old and decreased with age. A characteristic seasonal variation in 25(OH)D3 concentrations was observed (range 33.2–57.1 nmol/L, p<0.001), with the highest concentrations in August to October. Age (2.0% per year increase; CI: 1.7, 2.2), female gender (7.1%; CI: 2.0; 12.5), alcohol intake (0.2% per increase in drinks/week; 0.0; 0.4), and traditional diet (10.0% per 100 g/d increase; CI: 7.9; 12.1) were associated with increased serum 25(OH)D3, whereas smoking (−11.6%; CI: −16.2; −6.9), BMI (−0.6%; CI: −1.1; −0.2) and latitude (−0.7% per degree increase; CI: −1.3; −0.2) were associated with decreased concentrations.

Conclusion

We identified a remarkable decrease in vitamin D status from 1987 to 2005–2010 and a presently low vitamin D status among Inuit in Greenland. A change away from a traditional diet may well explain the observed decline. The study argues for the need of increased dietary intake of vitamin D and supplementation might be considered.  相似文献   
140.
In this communication we show that Gd3+ acts as an activator of the apical sodium channel (ENaC) in frog skin epithelia. Application of Gd3+ to the apical solution of frog skin epithelia increased the Na+ absorption measured as the amiloride-inhibitable short-circuit current (Isc). The stimulation was dose dependent with a concentration for half-maximal stimulation (EC50) of 0.023 mM. The change in Isc was found to correlate with the net Na+ flux, confirming that Gd3+ enhances Na+ absorption. By monitoring the cellular potential (Vsc) with microelectrodes during addition of Gd3+, it was found that Vsc depolarized as Isc rose, indicating that Gd3+ affects apical Na+ permeability (PNa). This was confirmed by measuring the I/V relations of the apical membrane. In the presence of benzimidazolylguanidin (BIG), a drug known to abolish the Na+ self-inhibition, Gd3+ had no effect on Isc. The Na+ self-inhibition was investigated using fast changes of the apical Na+ concentration on K+-depolarized epithelia. BIG was found to abolish the Na+ self-inhibition and to activate the basal Na+ transport, whereas Gd3+ only activated the basal Na+ transport but had no effect on the self-inhibition. These results indicate the existence of an alternative nonhormonal mechanism to Na+ self-inhibition, via which both Gd3+ and BIG act, possibly components of the Na+ feedback inhibition system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号