首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   50篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   8篇
  2018年   3篇
  2017年   5篇
  2016年   17篇
  2015年   20篇
  2014年   27篇
  2013年   36篇
  2012年   41篇
  2011年   25篇
  2010年   26篇
  2009年   14篇
  2008年   32篇
  2007年   30篇
  2006年   24篇
  2005年   27篇
  2004年   20篇
  2003年   28篇
  2002年   29篇
  2001年   11篇
  2000年   19篇
  1999年   17篇
  1998年   5篇
  1997年   8篇
  1996年   8篇
  1995年   4篇
  1994年   7篇
  1993年   7篇
  1992年   16篇
  1991年   9篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   7篇
  1986年   6篇
  1985年   4篇
  1984年   4篇
  1983年   7篇
  1982年   5篇
  1981年   2篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   3篇
  1963年   1篇
  1953年   1篇
  1952年   1篇
  1951年   1篇
排序方式: 共有603条查询结果,搜索用时 31 毫秒
61.
62.
The serotonin transporter (SERT) controls synaptic serotonin levels and is the primary target for antidepressants, including selective serotonin reuptake inhibitors (e.g. (S)-citalopram) and tricyclic antidepressants (e.g. clomipramine). In addition to a high affinity binding site, SERT possesses a low affinity allosteric site for antidepressants. Binding to the allosteric site impedes dissociation of antidepressants from the high affinity site, which may enhance antidepressant efficacy. Here we employ an induced fit docking/molecular dynamics protocol to identify the residues that may be involved in the allosteric binding in the extracellular vestibule located above the central substrate binding (S1) site. Indeed, mutagenesis of selected residues in the vestibule reduces the allosteric potency of (S)-citalopram and clomipramine. The identified site is further supported by the inhibitory effects of Zn2+ binding in an engineered site and the covalent attachment of benzocaine-methanethiosulfonate to a cysteine introduced in the extracellular vestibule. The data provide a mechanistic explanation for the allosteric action of antidepressants at SERT and suggest that the role of the vestibule is evolutionarily conserved among neurotransmitter:sodium symporter proteins as a binding pocket for small molecule ligands.  相似文献   
63.
In this study we present novel bispecific antibodies that simultaneously target the insulin-like growth factor receptor type I (IGF-1R) and epidermal growth factor receptor (EGFR). For this purpose disulfide stabilized scFv domains of the EGFR/ADCC antibody GA201 were fused via serine-glycine connectors to the C-terminus of the heavy (XGFR2) or light chain (XGFR4), or the N-termini of the light (XGFR5) or heavy chain (XGFR3) of the IGF-1R antibody R1507 as parental IgG1 antibody. The resulting bispecific IGF-1R-EGFR antibodies XGFR2, XGFR3 and XGFR4 were successfully generated with yields and stability comparable to conventional IgG1 antibodies. They effectively inhibited IGF-1R and EGFR phosphorylation and 3D proliferation of H322M and H460M2 tumor cells, induced strong down-modulation of IGF-1R as well as enhanced EGFR down-modulation compared to the parental EGFR antibody GA201 and were ADCC competent. The bispecific XGFR derivatives showed a strong format dependent influence of N- or C-terminal heavy and light chain scFv attachment on ADCC activity and an increase in receptor downregulation over the parental combination in vitro. XGFR2 and XGFR4 were selected for in vivo evaluation and showed potent anti-tumoral efficacy comparable to the combination of monospecific IGF-1R and EGFR antibodies in subcutaneous BxPC3 and H322M xenograft models. In summary, we have managed to overcome issues of stability and productivity of bispecific antibodies, discovered important antibody fusion protein design related differences on ADCC activity and receptor downmodulation and show that IGF-1R-EGFR antibodies represent an attractive therapeutic strategy to simultaneously target two key components de-regulated in multiple cancer types, with the ultimate goal to avoid the formation of resistance to therapy.  相似文献   
64.
65.
66.
Fascicle angle (FA) is suggested to increase as a result of fiber hypertrophy and furthermore to serve as the explanatory link in the discrepancy in the relative adaptations in the anatomical cross-sectional area (CSA) and fiber CSA after resistance training (RT). In contrast to RT, the effects of endurance training on FA are unclear. The purpose of this study was therefore to investigate and compare the longitudinal effects of either progressive endurance training (END, n = 7) or RT (n = 7) in young untrained men on FA, anatomical CSA, and fiber CSA. Muscle morphological measures included the assessment of vastus lateralis FA obtained by ultrasonography and anatomical CSA by magnetic resonance imaging of the thigh and fiber CSA deduced from histochemical analyses of biopsy samples from m. vastus lateralis. Functional performance measures included VO2max and maximal voluntary contraction (MVC). The RT produced increases in FA by 23 ± 8% (p < 0.01), anatomical CSA of the knee extensor muscles by 9 ± 3% (p = 0.001), and fiber CSA by 19 ± 7% (p < 0.05). RT increased knee extensor MVC by 20 ± 5% (p < 0.001). END increased VO2max by 10 ± 2% but did not evoke changes in FA, anatomical CSA, or in fiber CSA. In conclusion, the morphological changes induced by 10 weeks of RT support that FA does indeed serve as the explanatory link in the observed discrepancy between the changes in anatomical and fiber CSA. Contrarily, 10 weeks of endurance training did not induce changes in FA, but the lack of morphological changes from END indirectly support the fact that fiber hypertrophy and FA are interrelated.  相似文献   
67.

Objectives

We assessed the prospective association of resting heart rate (RHR) at baseline with peak oxygen uptake (VO2peak) 23 years later, and evaluated whether physical activity (PA) could modify this association.

Background

Both RHR and VO2peak are strong and independent predictors of cardiovascular morbidity and mortality. However, the association of RHR with VO2peak and modifying effect of PA have not been prospectively assessed in population studies.

Methods

In 807 men and 810 women free from cardiovascular disease both at baseline (1984–86) and follow-up 23 years later, RHR was recorded at both occasions, and VO2peak was measured by ergospirometry at follow-up. We used Generalized Linear Models to assess the association of baseline RHR with VO2peak, and to study combined effects of RHR and self-reported PA on later VO2peak.

Results

There was an inverse association of RHR at baseline with VO2peak (p<0.01). Men and women with baseline RHR greater than 80 bpm had 4.6 mL·kg−1·min−1 (95% confidence interval [CI], 2.8 to 6.3) and 1.4 mL·kg−1·min−1 (95% CI, −0.4 to 3.1) lower VO2peak at follow-up compared with men and women with RHR below 60 bpm at baseline. We found a linear association of change in RHR with VO2peak (p = 0.03), suggesting that a decrease in RHR over time is likely to be beneficial for cardiovascular fitness. Participants with low RHR and high PA at baseline had higher VO2peak than inactive people with relatively high RHR. However, among participants with relatively high RHR and high PA at baseline, VO2peak was similar to inactive people with relatively low RHR.

Conclusion

RHR is an important predictor of VO2peak, and serial assessments of RHR may provide useful and inexpensive information on cardiovascular fitness. The results suggest that high levels of PA may compensate for the lower VO2peak associated with a high RHR.  相似文献   
68.

Background

Adverse neurodevelopmental sequelae are reported among children who undergo early cardiac surgery to repair congenital heart defects (CHD). APOE genotype has previously been determined to contribute to the prediction of these outcomes. Understanding further genetic causes for the development of poor neurobehavioral outcomes should enhance patient risk stratification and improve both prevention and treatment strategies.

Methods

We performed a prospective observational study of children who underwent cardiac surgery before six months of age; this included a neurodevelopmental evaluation between their fourth and fifth birthdays. Attention and behavioral skills were assessed through parental report utilizing the Attention Deficit-Hyperactivity Disorder-IV scale preschool edition (ADHD-IV), and Child Behavior Checklist (CBCL/1.5-5), respectively. Of the seven investigated, three neurodevelopmental phenotypes met genomic quality control criteria. Linear regression was performed to determine the effect of genome-wide genetic variation on these three neurodevelopmental measures in 316 subjects.

Results

This genome-wide association study identified single nucleotide polymorphisms (SNPs) associated with three neurobehavioral phenotypes in the postoperative children ADHD-IV Impulsivity/Hyperactivity, CBCL/1.5-5 PDPs, and CBCL/1.5-5 Total Problems. The most predictive SNPs for each phenotype were: a LGALS8 intronic SNP, rs4659682, associated with ADHD-IV Impulsivity (P = 1.03×10−6); a PCSK5 intronic SNP, rs2261722, associated with CBCL/1.5-5 PDPs (P = 1.11×10−6); and an intergenic SNP, rs11617488, 50 kb from FGF9, associated with CBCL/1.5-5 Total Problems (P = 3.47×10−7). 10 SNPs (3 for ADHD-IV Impulsivity, 5 for CBCL/1.5-5 PDPs, and 2 for CBCL/1.5-5 Total Problems) had p<10−5.

Conclusions

No SNPs met genome-wide significance for our three neurobehavioral phenotypes; however, 10 SNPs reached a threshold for suggestive significance (p<10−5). Given the unique nature of this cohort, larger studies and/or replication are not possible. Studies to further investigate the mechanisms through which these newly identified genes may influence neurodevelopment dysfunction are warranted.  相似文献   
69.

Background

Heart failure (HF) is known to lead to skeletal muscle atrophy and dysfunction. However, intracellular mechanisms underlying HF-induced myopathy are not fully understood. We hypothesized that HF would increase oxidative stress and ubiquitin-proteasome system (UPS) activation in skeletal muscle of sympathetic hyperactivity mouse model. We also tested the hypothesis that aerobic exercise training (AET) would reestablish UPS activation in mice and human HF.

Methods/Principal Findings

Time-course evaluation of plantaris muscle cross-sectional area, lipid hydroperoxidation, protein carbonylation and chymotrypsin-like proteasome activity was performed in a mouse model of sympathetic hyperactivity-induced HF. At the 7th month of age, HF mice displayed skeletal muscle atrophy, increased oxidative stress and UPS overactivation. Moderate-intensity AET restored lipid hydroperoxides and carbonylated protein levels paralleled by reduced E3 ligases mRNA levels, and reestablished chymotrypsin-like proteasome activity and plantaris trophicity. In human HF (patients randomized to sedentary or moderate-intensity AET protocol), skeletal muscle chymotrypsin-like proteasome activity was also increased and AET restored it to healthy control subjects’ levels.

Conclusions

Collectively, our data provide evidence that AET effectively counteracts redox imbalance and UPS overactivation, preventing skeletal myopathy and exercise intolerance in sympathetic hyperactivity-induced HF in mice. Of particular interest, AET attenuates skeletal muscle proteasome activity paralleled by improved aerobic capacity in HF patients, which is not achieved by drug treatment itself. Altogether these findings strengthen the clinical relevance of AET in the treatment of HF.  相似文献   
70.
Study of physiological angiogenesis and associated signalling mechanisms in adult heart has been limited by the lack of a robust animal model. We investigated thyroid hormone‐induced sprouting angiogenesis and the underlying mechanism. Hypothyroidism was induced in C57BL/6J mice by feeding with propylthiouracil (PTU). One year of PTU treatment induced heart failure. Both 12 weeks‐ (young) and 1 year‐PTU (middle age) treatment caused a remarkable capillary rarefaction observed in capillary density. Three‐day Triiodothyronine (T3) treatment significantly induced cardiac capillary growth in hypothyroid mice. In cultured left ventricle (LV) tissues from PTU‐treated mice, T3 also induced robust sprouting angiogenesis where pericyte‐wrapped endothelial cells formed tubes. The in vitro T3 angiogenic response was similar in mice pre‐treated with PTU for periods ranging from 1.5 to 12 months. Besides bFGF and VEGF164, PDGF‐BB was the most robust angiogenic growth factor, which stimulated notable sprouting angiogenesis in cultured hypothyroid LV tissues with increasing potency, but had little effect on tissues from euthyroid mice. T3 treatment significantly increased PDGF receptor beta (PDGFR‐β) protein levels in hypothyroid heart. PDGFR inhibitors blocked the action of T3 both on sprouting angiogenesis in cultured LV tissue and on capillary growth in vivo. In addition, activation of Akt signalling mediated in T3‐induced angiogenesis was blocked by PDGFR inhibitor and neutralizing antibody. Our results suggest that hypothyroidism leads to cardiac microvascular impairment and rarefaction with increased sensitivity to angiogenic growth factors. T3‐induced cardiac sprouting angiogenesis in adult hypothyroid mice was associated with PDGF‐BB, PDGFR‐β and downstream activation of Akt.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号