首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6465篇
  免费   532篇
  国内免费   3篇
  7000篇
  2022年   42篇
  2021年   71篇
  2020年   58篇
  2019年   53篇
  2018年   96篇
  2017年   76篇
  2016年   121篇
  2015年   236篇
  2014年   275篇
  2013年   308篇
  2012年   452篇
  2011年   394篇
  2010年   277篇
  2009年   233篇
  2008年   363篇
  2007年   377篇
  2006年   351篇
  2005年   344篇
  2004年   324篇
  2003年   320篇
  2002年   313篇
  2001年   95篇
  2000年   62篇
  1999年   88篇
  1998年   106篇
  1997年   65篇
  1996年   62篇
  1995年   76篇
  1994年   77篇
  1993年   76篇
  1992年   68篇
  1991年   52篇
  1990年   61篇
  1989年   43篇
  1988年   54篇
  1987年   45篇
  1986年   51篇
  1985年   50篇
  1984年   59篇
  1983年   46篇
  1982年   47篇
  1981年   41篇
  1980年   46篇
  1979年   41篇
  1978年   45篇
  1977年   36篇
  1974年   40篇
  1972年   31篇
  1970年   27篇
  1969年   33篇
排序方式: 共有7000条查询结果,搜索用时 9 毫秒
961.
962.

Background

Small animal models of human diseases are an indispensable aspect of pre-clinical research. Being dynamic, most pathologies demand extensive longitudinal monitoring to understand disease mechanisms, drug efficacy and side effects. These considerations often demand the concomitant development of monitoring systems with sufficient temporal and spatial resolution.

Methodology and Results

This study attempts to configure and optimize a clinical 3 Tesla magnetic resonance scanner to facilitate imaging of small animal central nervous system pathologies. The hardware of the scanner was complemented by a custom-built, 4-channel phased array coil system. Extensive modification of standard sequence protocols was carried out based on tissue relaxometric calculations. Proton density differences between the gray and white matter of the rodent spinal cord along with transverse relaxation due to magnetic susceptibility differences at the cortex and striatum of both rats and mice demonstrated statistically significant differences. The employed parallel imaging reconstruction algorithms had distinct properties dependent on the sequence type and in the presence of the contrast agent. The attempt to morphologically phenotype a normal healthy rat brain in multiple planes delineated a number of anatomical regions, and all the clinically relevant sequels following acute cerebral ischemia could be adequately characterized. Changes in blood-brain-barrier permeability following ischemia-reperfusion were also apparent at a later time. Typical characteristics of intra-cerebral haemorrhage at acute and chronic stages were also visualized up to one month. Two models of rodent spinal cord injury were adequately characterized and closely mimicked the results of histological studies. In the employed rodent animal handling system a mouse model of glioblastoma was also studied with unequivocal results.

Conclusions

The implemented customizations including extensive sequence protocol modifications resulted in images of high diagnostic quality. These results prove that lack of dedicated animal scanners shouldn''t discourage conventional small animal imaging studies.  相似文献   
963.

Background

Peptide patterns of bronchoalveolar lavage fluid (BALF) were assumed to reflect the complex pathology of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) better than clinical and inflammatory parameters and may be superior for outcome prediction.

Methodology/Principal Findings

A training group of patients suffering from ALI/ARDS was compiled from equal numbers of survivors and nonsurvivors. Clinical history, ventilation parameters, Murray''s lung injury severity score (Murray''s LISS) and interleukins in BALF were gathered. In addition, samples of bronchoalveolar lavage fluid were analyzed by means of hydrophobic chromatography and MALDI-ToF mass spectrometry (MALDI-ToF MS).Receiver operating characteristic (ROC) analysis for each clinical and cytokine parameter revealed interleukin-6>interleukin-8>diabetes mellitus>Murray''s LISS as the best outcome predictors. Outcome predicted on the basis of BALF levels of interleukin-6 resulted in 79.4% accuracy, 82.7% sensitivity and 76.1% specificity (area under the ROC curve, AUC, 0.853). Both clinical parameters and cytokines as well as peptide patterns determined by MALDI-ToF MS were analyzed by classification and regression tree (CART) analysis and support vector machine (SVM) algorithms. CART analysis including Murray''s LISS, interleukin-6 and interleukin-8 in combination was correct in 78.0%. MALDI-ToF MS of BALF peptides did not reveal a single identifiable biomarker for ARDS. However, classification of patients was successfully achieved based on the entire peptide pattern analyzed using SVM. This method resulted in 90% accuracy, 93.3% sensitivity and 86.7% specificity following a 10-fold cross validation (AUC = 0.953). Subsequent validation of the optimized SVM algorithm with a test group of patients with unknown prognosis yielded 87.5% accuracy, 83.3% sensitivity and 90.0% specificity.

Conclusions/Significance

MALDI-ToF MS peptide patterns of BALF, evaluated by appropriate mathematical methods can be of value in predicting outcome in pneumonia induced ALI/ARDS.  相似文献   
964.
Focused mutant library generation methods have been developed to improve mainly "localizable" enzyme properties such as activity and selectivity. Current multi-site saturation methods are restricted by the gene sequence, require subsequent PCR steps and/or additional enzymatic modifications. Here we report, a multiple site saturation mutagenesis method, OmniChange, which simultaneously and efficiently saturates five independent codons. As proof of principle, five chemically cleaved DNA fragments, each carrying one NNK-degenerated codon, were generated and assembled to full gene length in a one-pot-reaction without additional PCR-amplification or use of restriction enzymes or ligases. Sequencing revealed the presence of up to 27 different codons at individual positions, corresponding to 84.4% of the theoretical diversity offered by NNK-degeneration. OmniChange is absolutely sequence independent, does not require a minimal distance between mutated codons and can be accomplished within a day.  相似文献   
965.
966.
967.
968.
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) mediates long-term potentiation or depression (LTP or LTD) after distinct stimuli of hippocampal NMDA-type glutamate receptors (NMDARs). NMDAR-dependent LTD prevails in juvenile mice, but a mechanistically different form of LTD can be readily induced in adults by instead stimulating metabotropic glutamate receptors (mGluRs). However, the role that CaMKII plays in the mGluR-dependent form of LTD is not clear. Here we show that mGluR-dependent LTD also requires CaMKII and its T286 autophosphorylation (pT286), which induces Ca2+-independent autonomous kinase activity. In addition, we compared the role of pT286 among three forms of long-term plasticity (NMDAR-dependent LTP and LTD, and mGluR-dependent LTD) using simultaneous live imaging of endogenous CaMKII together with synaptic marker proteins. We determined that after LTP stimuli, pT286 autophosphorylation accelerated CaMKII movement to excitatory synapses. After NMDAR-LTD stimuli, pT286 was strictly required for any movement to inhibitory synapses. Similar to NMDAR-LTD, we found the mGluR-LTD stimuli did not induce CaMKII movement to excitatory synapses. However, in contrast to NMDAR-LTD, we demonstrate that the mGluR-LTD did not involve CaMKII movement to inhibitory synapses and did not require additional T305/306 autophosphorylation. Thus, despite its prominent role in LTP, we conclude that CaMKII T286 autophosphorylation is also required for both major forms of hippocampal LTD, albeit with differential requirements for the heterosynaptic communication of excitatory signals to inhibitory synapses.  相似文献   
969.
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号