首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6615篇
  免费   540篇
  国内免费   3篇
  2022年   39篇
  2021年   73篇
  2020年   62篇
  2019年   51篇
  2018年   98篇
  2017年   79篇
  2016年   127篇
  2015年   235篇
  2014年   282篇
  2013年   320篇
  2012年   458篇
  2011年   409篇
  2010年   284篇
  2009年   240篇
  2008年   376篇
  2007年   380篇
  2006年   357篇
  2005年   344篇
  2004年   327篇
  2003年   324篇
  2002年   322篇
  2001年   105篇
  2000年   68篇
  1999年   90篇
  1998年   106篇
  1997年   65篇
  1996年   62篇
  1995年   78篇
  1994年   79篇
  1993年   76篇
  1992年   70篇
  1991年   56篇
  1990年   64篇
  1989年   50篇
  1988年   58篇
  1987年   47篇
  1986年   52篇
  1985年   55篇
  1984年   63篇
  1983年   45篇
  1982年   44篇
  1981年   41篇
  1980年   51篇
  1979年   42篇
  1978年   42篇
  1977年   34篇
  1974年   38篇
  1972年   31篇
  1970年   28篇
  1969年   35篇
排序方式: 共有7158条查询结果,搜索用时 15 毫秒
21.
Summary Extracellular Pseudomonas lipase is able to interact directly or indirectly with alginate as deduced from the following results: (i) During adsorption chromatography of exolipase the enzyme adsorbed quantitatively to glass beads in the absence of alginate, but not after its preincubation in the presence of the polysaccharide; pretreatment of glass beads with alginate did not prevent enzyme adsorption. (ii) In the presence of alginate exolipase was much more resistant to heat inactivation than in its absence. (iii) In the presence of alginate the increase in exolipase activity caused by the non-ionic detergent Triton X-100 was drastically reduced. (iv) Exolipase could be rapidly and almost completely harvested from cell-free culture fluid of P. aeruginosa 5940 by ethanolic coprecipitation with alginate. After dissolving the coprecipitate in detergent-containing buffer exolipase and polysaccharide could be easily separated by ion-exchange chromatography on DEAE-Sephadex A-25. The coprecipitation method was also successfully applied to exolipases produced by Pseudomonas sp., Chromobacierium viscosum and Rhizopus delamar, thus suggesting potential use of this method in biotechnology.  相似文献   
22.
Ulrich Gerloff 《Planta》1936,25(5):667-688
Ohne ZusammenfassungMit 1 Textabbildung.Dissertation der Philosophischen Fakultät der Universität Leipzig.  相似文献   
23.
24.
The protolytic reactions of PSII membrane fragments were analyzed by measurements of absorption changes of the water soluble indicator dye bromocresol purple induced by a train of 10 s flashes in dark-adapted samples. It was found that: a) in the first flash a rapid H+-release takes place followed by a slower H+-uptake. The deprotonation is insensitive to DCMU but is completely eliminated by linolenic acid treatment of the samples; b) the extent of the H+-uptake in the first flash depends on the redox potential of the suspension. In this time domain no H+-uptake is observed in the subsequent flashes; c) the extent of the H+-release as a function of the flash number in the sequence exhibits a characteristic oscillation pattern. Multiphasic release kinetics are observed. The oscillation pattern can be satisfactorily described by a 1, 0, 1, 2 stoichiometry for the redox transitions Si Si+1 (i=0, 1, 2, 3) in the water oxidizing enzyme system Y. The H+-uptake after the first flash is assumed to be a consequence of the very fast reduction of oxidized Q400(Fe3+) formed due to dark incubation with K3[Fe(CN)6]. The possible participation of component Z in the deprotonation reactions at the PSII donor side is discussed.Abbreviations A protonizable group at the PSII acceptor side - BCP Bromocresol Purple - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FWHM Full Width at Half Maximum - QA, QB primary and secondary plastoquinone at PSII acceptor side - Q400 redox group at PSII-acceptor side (high spin Fe2+) - P680 Photoactive chlorophyll of PSII reaction center - Si redox states of the catalytic site of water oxidation - Z redox component connecting the catalytic site of water oxidation with the reaction center  相似文献   
25.
Day/night changes in turgor pressure (P) and titratable acidity content were investigated in the (Crassulacean-acid-metabolism (CAM) plant Kalanchoe daigremontiana. Measurements of P were made on individual mesophyll cells of intact attached leaves using the pressure-probe technique. Under conditions of high relative humidity, when transpiration rates were minimal, changes in P correlated well with changes in the level of titratable acidity. During the standard 12 h light/12 h dark cycle, maximum turgor pressure (0.15 MPa) occurred at the end of the dark period when the level of titratable acidity was highest (about 300 eq H+·g-1 fresh weight). A close relationship between P and titratable acidity was also seen in leaves exposed to perturbations of the standard light/dark cycle. (The dark period was either prolonged, or else only CO2-free air was supplied in this period). In plants deprived of irrigation for five weeks, diurnal changes in titratable acidity of the leaves were reduced (H=160 eq H+·g-1 fresh weight) and P increased from essentially zero at the end of the light period to 0.02 MPa at the end of the dark period. Following more severe water stress (experiments were made on leaves which had been detached for five weeks), P was zero throughout day and night, yet small diurnal changes in titratable acidity were still measured. These findings are discussed in relation to a hypothesis by Lüttge et al. 1975 (Plant Physiol. 56,613-616) for the role of P in the regulation of acidification/de-acidification cycles of plants exhibiting CAM.Abbreviations CAM crassulacean acid metabolism - FW fresh weight - P turgor pressure  相似文献   
26.
Ulrich Lieder 《Hydrobiologia》1987,145(1):201-211
Besides the genusBosmina, the genusDaphnia offers considerable taxonomic difficulties due to the existence of a very great number of different morphotypes and their intergrades. Especially the morphotypes clustering aroundDaphnia galeata Sars, 1864,D. hyalina Leydig, 1860, andD. cucullata Sars, 1862 offer a bewildering picture. In the last years an attempt has been made to understand this phenomenon mainly as the result of hybridization and colonization of new biotopes by populations with hybridogenetic polymorphism and genotypic diversity (founder effect). Now it will be suggested on a morphological base thatD. cucullata procurva Poppe, 1887, a unique and aberrant formtype restricted to few lakes along the river Brda in Poland, is probably an old and stabilized hybrid originating from interspecific hybridization betweenD. galeata andD. cucullata.  相似文献   
27.
The substrate specificity of the trypanosomatid enzyme trypanothione reductase has been studied by measuring the ability of the enzyme to reduce a series of chemically synthesized cyclic and acyclic derivatives of N1,N8-bis(glutathionyl)spermidine disulfide (trypanothione). Kinetic analysis of the enzymatic reduction of these synthetic substrates indicates that the mutually exclusive substrate specificity observed by the NADPH-dependent trypanothione disulfide reductase and the related flavoprotein glutathione disulfide reductase is due to the presence of a spermidine binding site in the substrate binding domain of trypanothione reductase. Trypanothione reductase will reduce the disulfide form of N1-monoglutathionylspermidine and also the mixed disulfide of N1-monoglutathionylspermidine and glutathione. The Michaelis constants for these reactions are 149 microM and 379 microM, respectively. Since the disulfide form of N1-monoglutathionylspermidine and the mixed disulfide of N1-monoglutathionylspermidine and glutathione could be formed in trypanosomatids, the binding constants and turnover numbers for the enzymatic reduction of these acyclic disulfides are consistent with these being potential alternative substrates for trypanothione reductase in vivo.  相似文献   
28.
Expression vectors for cDNA of the κ and λ1 chains of a monoclonal antibody directed against creatine kinase were introduced into murine myeloma cells. κ and γ1 cDNA were either under the control of the SV40 early promoter or of the cognate promoters and enhancers of the light- and heavy-chain genes. Secretion of immuno-reactive κ and γ1 chains into the culture medium was demonstrated with the SV40 promoter as well as with the cognate promoters. Expression of y 1 cDNA with the SV40 early promoter was about twice as high as with the heavy-chain promoter and enhancer. Expression of κ cDNA under the control of the S V40 early promoter was about 17 times higher than with the light-chain promoter and enhancer. These expression levels were compared to those of a genomic immunoglobulin (Ig) κ determinant, including introns. Such an entire κ gene led to expression of the light chain at levels double those with the κ cDNA construction using the SV40 promoter and about 35 times as high when using κ cDNA and the cognate promoter and enhancer. This result might indicate that, besides the cognate promoter and enhancer elements, other intragenic elements are involved in the regulation of Ig expression. However, the SV40 early promoter seems to be able to compensate for the absence of these postulated regulatory elements probably located in the introns.  相似文献   
29.
Eighteen granular cell tumors from various sites were examined with antisera directed against protein S-100, neuron specific enolase (NSE), alpha-1-antichymotrypsin, and alpha-1-antitrypsin, glial fibrillary acidic protein (GFAP), lysozyme, factor VIII-related antigen, myoglobin and vimentin, as well as with a monoclonal antibody (lu-5) directed against a panepithelial marker. The immunocytochemical reaction pattern of the tumors was heterogeneous. The brain and pituitary tumors and one thyroid tumor reacted for alpha-1-antichymotrypsin and alpha-1-antitrypsin, but not for S-100 protein and NSE. However, tumors from other sites showed immunoreactions for S-100 protein and NSE and some also for vimentin. Reactions for alpha-1-antichymotrypsin and alpha-1-antitrypsin were not observed. All other reactions were similarly negative. We conclude that the morphologically homogeneous group of granular cell tumors is biologically heterogeneous.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号