首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  32篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1990年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
11.
Oncoprotein 18 (Op18, also termed p19, 19K, metablastin, stathmin, and prosolin) is a recently identified regulator of microtubule (MT) dynamics. Op18 is a target for both cell cycle and cell surface receptor-coupled kinase systems, and phosphorylation of Op18 on specific combinations of sites has been shown to switch off its MT-destabilizing activity. Here we show that induced expression of the catalytic subunit of cAMP-dependent protein kinase (PKA) results in a dramatic increase in cellular MT polymer content concomitant with phosphorylation and partial degradation of Op18. That PKA may regulate the MT system by downregulation of Op18 activity was evaluated by a genetic system allowing conditional co-expression of PKA and a series of kinase target site–deficient mutants of Op18. The results show that phosphorylation of Op18 on two specific sites, Ser-16 and Ser-63, is necessary and sufficient for PKA to switch off Op18 activity in intact cells. The regulatory importance of dual phosphorylation on Ser-16 and Ser-63 of Op18 was reproduced by in vitro assays. These results suggest a simple model where PKA phosphorylation downregulates the MT-destabilizing activity of Op18, which in turn promotes increased tubulin polymerization. Hence, the present study shows that Op18 has the potential to regulate the MT system in response to external signals such as cAMP-linked agonists.  相似文献   
12.
The complexes of Hoechst 33258 with poly[d(A-T)2], poly[d(I-C)2], poly[d(G-C)2], and poly[d(G-m5C)2] were studied using linear dichroism, CD, and fluorescence spectroscopies. The Hoechst-poly[d(I-C)2] complex, in which there is no guanine amino group protruding in the minor groove, exhibits spectroscopic properties that are very similar to those of the Hoechst-poly[d(A-T)2] complex. When bound to both of these polynucleotides, Hoechst exhibits an average orientation angle of near 45° relative to the DNA helix axis for the long-axis polarized low-energy transition, a relatively strong positive induced CD, and a strong increase in fluorescence intensity—leading us to conclude that this molecule also binds in the minor groove of poly[d(I-C)2]. By contrast, when bound to poly[d(G-C)2] and poly[d(G-m5C)2], Hoechst shows a distinctively different behavior. The strongly negative reduced linear dichroism in the ligand absorption region is consistent with a model in which part of the Hoechst chromophore is intercalculated between DNA bases. From the low drug:base ratio onset of excitonic effects in the CD and fluorescence emission spectra, it is inferred that another part of the Hoechst molecule may sit in the major groove of poly[d(G-C)2] and poly[d(G-m5C)2] and preferentially stacks into dimers, though this tendency is strongly reduced for the latter polynucleotide. Based on these results, the importance of the interactions of Hoechst with the exocyclic amino group of guanine and the methyl group of cytosine in determining the binding modes are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   
13.
The complex network of neuronal cells in the retina makes it a potential target of neuronal toxicity – a risk factor for visual loss. With growing use of nanoparticles (NPs) in commercial and medical applications, including ophthalmology, there is a need for reliable models for early prediction of NP toxicity in the eye and retina. Metal NPs, such as gold and silver, gain much of attention in the ophthalmology community due to their potential to cross the barriers of the eye. Here, NP uptake and signs of toxicity were investigated after exposure to 20 and 80 nm Ag- and AuNPs, using an in vitro tissue culture model of the mouse retina. The model offers long-term preservation of retinal cell types, numbers and morphology and is a controlled system for delivery of NPs, using serum-free defined culture medium. AgNO3-treatment was used as control for toxicity caused by silver ions. These end-points were studied; gross morphological organization, glial activity, microglial activity, level of apoptosis and oxidative stress, which are all well described as signs of insult to neural tissue. TEM analysis demonstrated cellular- and nuclear uptake of all NP types in all neuronal layers of the retina. Htx-eosin staining showed morphological disruption of the normal complex layered retinal structure, vacuole formation and pyknotic cells after exposure to all Ag- and AuNPs. Significantly higher numbers of apoptotic cells as well as an increased number of oxidative stressed cells demonstrated NP-related neuronal toxicity. NPs also caused increased glial staining and microglial cell activation, typical hallmarks of neural tissue insult. This study demonstrates that low concentrations of 20 and 80 nm sized Ag- and AuNPs have adverse effects on the retina, using an organotypic retina culture model. Our results motivate careful assessment of candidate NP, metallic or-non-metallic, to be used in neural systems for therapeutic approaches.  相似文献   
14.
An automated platform for development of high producing cell lines for biopharmaceutical production has been established in order to increase throughput and reduce development costs. The concept is based on the Cello robotic system (The Automation Partnership) and covers screening for colonies and expansion of static cultures. In this study, the glutamine synthetase expression system (Lonza Biologics) for production of therapeutic monoclonal antibodies in Chinese hamster ovary cells was used for evaluation of the automation approach. It is shown that the automated procedure is capable of producing cell lines of equal quality to the traditionally generated cell lines in terms of colony detection following transfection and distribution of IgG titer in the screening steps. In a generic fed-batch evaluation in stirred tank bioreactors, IgG titers of 4.7 and 5.0 g/L were obtained for best expressing cell lines. We have estimated that the number of completed cell line development projects can be increased up to three times using the automated process without increasing manual workload, compared to the manual process. Correlation between IgG titers obtained in early screens and titers achieved in fed-batch cultures in shake flasks was found to be poor. This further implies the benefits of utilizing a high throughput system capable of screening and expanding a high number of transfectants. Two concentrations, 56 and 75 μM, of selection agent, methionine sulphoximine (MSX), were applied to evaluate the impact on the number of colonies obtained post transfection. When applying selection medium containing 75 μM MSX, fewer low producing transfectants were obtained, compared to cell lines selected with 56 μM MSX, but an equal number of high producing cell lines were found. By using the higher MSX concentration, the number of cell line development projects run in parallel could be increased and thereby increasing the overall capacity of the automated platform process. A. Salmén and K. Lindgren contributed equally to the work.  相似文献   
15.
Rapid development of nanotechnologies and their applications in clinical research have raised concerns about the adverse effects of nanoparticles (NPs) on human health and environment. NPs can be directly taken up by organs exposed, but also translocated to secondary organs, such as the central nervous system (CNS) after systemic- or subcutaneous administration, or via the olfactory system. The CNS is particularly vulnerable during development and recent reports describe transport of NPs across the placenta and even into brain tissue using in vitro and in vivo experimental systems. Here, we investigated whether well-characterized commercial 20 and 80 nm Au- and AgNPs have an effect on human embryonic neural precursor cell (HNPC) growth. After two weeks of NP exposure, uptake of NPs, morphological features and the amount of viable and dead cells, proliferative cells (Ki67 immunostaining) and apoptotic cells (TUNEL assay), respectively, were studied. We demonstrate uptake of both 20 and 80 nm Au- and AgNPs respectively, by HNPCs during proliferation. A significant effect on the sphere size- and morphology was found for all cultures exposed to Au- and AgNPs. AgNPs of both sizes caused a significant increase in numbers of proliferating and apoptotic HNPCs. In contrast, only the highest dose of 20 nm AuNPs significantly affected proliferation, whereas no effect was seen on apoptotic cell death. Our data demonstrates that both Au- and AgNPs interfere with the growth profile of HNPCs, indicating the need of further detailed studies on the adverse effects of NPs on the developing CNS.  相似文献   
16.
Congenital or acquired hearing loss is often associated with a progressive degeneration of the auditory nerve (AN) in the inner ear. The AN is composed of processes and axons of the bipolar spiral ganglion neurons (SGN), forming the connection between the hair cells in the inner ear cochlea and the cochlear nuclei (CN) in the brainstem (BS). Therefore, replacement of SGNs for restoring the AN to improve hearing function in patients who receive a cochlear implantation or have severe AN malfunctions is an attractive idea. A human neural precursor cell (HNPC) is an appropriate donor cell to investigate, as it can be isolated and expanded in vitro with maintained potential to form neurons and glia. We recently developed a post-natal rodent in vitro auditory BS slice culture model including the CN and the central part of the AN for initial studies of candidate cells. Here we characterized the survival, distribution, phenotypic differentiation, and integration capacity of HNPCs into the auditory circuitry in vitro. HNPC aggregates (spheres) were deposited adjacent to or on top of the BS slices or as a monoculture (control). The results demonstrate that co-cultured HNPCs compared to monocultures (1) survive better, (2) distribute over a larger area, (3) to a larger extent and in a shorter time-frame form mature neuronal and glial phenotypes. HNPC showed the ability to extend neurites into host tissue. Our findings suggest that the HNPC-BS slice co-culture is appropriate for further investigations on the integration capacity of HNPCs into the auditory circuitry.  相似文献   
17.
Summary Expression of oncoprotein 18 (Op18), an intracellular phosphoprotein up-regulated in many malignant cell types, was evaluated in a series of normal lymphoid tissue and malignant lymphomas. In normal tonsils and reactive lymph nodes, the majority of Op18-positive cells were present in the germinal centres, whereas cells in the mantle zone were essentially negative and the interfollicular areas showed occasional positive cells. Double staining for PCNA and Op18 revealed that Op18 expression only to some extent was correlated with cell proliferation, as determined by PCNA expression.Non-Hodgkin's lymphomas exhibited a variable Op18 expression, and in Hodgkin's disease, Reed-Sternberg and Hodgkin cells frequently expressed Op18 with a strong staining intensity. Using Op18-PCNA double staining in malignant lymphomas, Op18 expression could also be partially dissociated from cell proliferation. By using confocal microscopy, the intracellular localization of Op18 was studied, demonstrating diffuse reactivity in the cytoplasm in interphase cells and during mitosis, whereas nuclei and condensed chromosomes were negative. In conclusion, Op18 was expressed at variable levels in most, perhaps all, proliferating lymphocytes in benign lymphoid tissue as well as in malignant lymphomas. However, the Op18 protein was also detected in a significant fraction of apparently non-cycling normal and neoplastic lymphocytes.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号