首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   19篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2018年   2篇
  2017年   4篇
  2016年   11篇
  2015年   7篇
  2014年   2篇
  2013年   8篇
  2012年   12篇
  2011年   11篇
  2010年   7篇
  2009年   3篇
  2008年   7篇
  2007年   12篇
  2006年   11篇
  2005年   9篇
  2004年   4篇
  2003年   8篇
  2002年   5篇
  2001年   9篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1978年   1篇
  1976年   1篇
  1967年   1篇
  1965年   1篇
排序方式: 共有178条查询结果,搜索用时 656 毫秒
151.
We studied the effect of a bean diet on biliary lipid secretion, serum cholesterol concentration, and hepatic cholesterol metabolism in the rat. Rats fed a bean diet for 10-12 days had increased biliary cholesterol output and molar percentage by 300% and 200%, respectively, compared to rats fed an isocaloric and isoprotein casein diet. Biliary phospholipid output increased 180%. Bile flow and biliary bile salt output remained in the normal range. Total serum and VLDL cholesterol concentration significantly decreased 27% and 50%, respectively, in the rats fed the bean diet. Hepatic cholesterogenesis was increased 170% in the bean-fed animals. The relative contribution of newly synthesized hepatic cholesterol to total biliary cholesterol increased 200%, and that of endogenous origin only 50%. These results suggested that newly synthesized hepatic cholesterol was preferentially channelled to the biliary cholesterol secretory pathway in bean-fed rats. Although hepatic cholesteryl ester concentration increased 240%, the incorporation of [14C]oleate into hepatic cholesteryl esters was significantly decreased by 30% in isolated hepatocytes of bean-fed animals. These results were consistent with the possibility that the availability of hepatic free cholesterol for biliary secretion was increased in the bean-fed animals. This study demonstrates that bean intake has a profound effect on the metabolic channelling and compartmentalization of hepatic cholesterol, resulting in a significant decrease in total serum and very low density lipoprotein cholesterol concentrations and a high biliary cholesterol output.  相似文献   
152.
Exposure for 24 h of mucus-secreting HT-29 cells to the sugar analogue GalNAc-α-O-benzyl results in inhibition of Galβ1-3GalNAc:α2,3-sialyltransferase, reduced mucin sialylation, and inhibition of their secretion (Huet, G., I. Kim, C. de Bolos, J.M. Loguidice, O. Moreau, B. Hémon, C. Richet, P. Delannoy, F.X. Real., and P. Degand. 1995. J. Cell Sci. 108:1275–1285). To determine the effects of prolonged inhibition of sialylation, differentiated HT-29 populations were grown under permanent exposure to GalNAc-α-O-benzyl. This results in not only inhibition of mucus secretion, but also in a dramatic swelling of the cells and the accumulation in intracytoplasmic vesicles of brush border–associated glycoproteins like dipeptidylpeptidase-IV, the mucin-like glycoprotein MUC1, and carcinoembryonic antigen which are no longer expressed at the apical membrane. The block occurs beyond the cis-Golgi as substantiated by endoglycosidase treatment and biosynthesis analysis. In contrast, the polarized expression of the basolateral glycoprotein GP 120 is not modified. Underlying these effects we found that (a) like in mucins, NeuAcα2-3Gal-R is expressed in the terminal position of the oligosaccharide species associated with the apical, but not the basolateral glycoproteins of the cells, and (b) treatment with GalNAc-α-O-benzyl results in an impairment of their sialylation. These effects are reversible upon removal of the drug. It is suggested that α2-3 sialylation is involved in apical targeting of brush border membrane glycoproteins and mucus secretion in HT-29 cells.  相似文献   
153.
The distribution of microtubule-associated protein lB (MAPlB) phosphorylated by either proline-directed protein kinase (PDPK) or casein kinase II (CK II) in neuroblastoma cells and hippocampal neurons has been studied by immunofluorescence using specific antibodies to distinct phosphorylation-sensitive epitopes. A proximo-distal gradient of increasing PDPK-catalyzed phosphorylation of MAPlB is superimposed on a proximo distal gradient of decreasing CK II-catalyzed MAPlB phosphorylation within growing axon-like neurites. Additionally, CK II-phosphorylated MAPlB is present in cell bodies and dendrites where no PDPK-phosphorylated MAPlB is observed. These results suggest distinct roles for both types of modifications of MAPlB in developing neurons.  相似文献   
154.
Wild killer yeasts have been identified as inhibitory to strains used as starters in the production of alcoholic beverages such as beer and wine; therefore, killer or killer-resistant strains have been sought for use in alcoholic fermentations. In the current paper a total of 16 strains belonging to six species were isolated. From two samples of Agave sap (aguamiel) the following yeast strains were isolated: Candida lusitaneae (1), Kluyveromyces marxianus var. bulgaricus (2), and Saccharomyces cerevisiae (capensis) (1). Additionally, in seven samples of pulque (the fermented product), the species C. valida (six strains), S. cerevisiae (chevalieri) (4), S. cerevisiae (capensis) (1), and K. marxianus var. lactis (1) were found. The killer strains were C. valida and K. marxianus var. lactis from pulque and K. marxianus var. bulgaricus from aguamiel. One strain of S. cerevisiae (chevalieri) isolated from pulque which did not show killer activity was, on the other hand, resistant to other killer strains and it had a remarkable ethanol tolerance, suggesting that this strain could be used for alcohol production.  相似文献   
155.
Reinvestigation of the fermentation broth and mycelium of the coprophilous fungus Guanomyces polythrix, grown in static conditions, led to the isolation of several phytotoxic compounds, including two new naphthopyranone derivatives, namely (2S, 3R)-5-hydroxy-6,8-dimethoxy-2,3-dimethyl-2,3-dihydro-4H-naphtho[2,3-b]-pyran-4-one and (2S, 3R)-5-hydroxy-6,8,10-trimethoxy-2,3-dimethyl-2,3-dihydro-4H-naphtho[2,3-b]-pyran-4-one. The structures of the new compounds were established by spectral and chiroptical methods. In addition, the structure of 8-hydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid methyl ester was unambiguously determined by X-ray analysis. The isolates caused significant inhibition of radicle growth of two weed seedlings (Amaranthus hypochondriacus and Echinochloa crusgalli) and interacted with both spinach and bovine brain calmodulins.  相似文献   
156.
Medicago spp. are able to develop root nodules via symbiotic interaction with Sinorhizobium meliloti. Calcium-dependent protein kinases (CDPKs) are involved in various signalling pathways in plants, and we found that expression of MtCPK3, a CDPK isoform present in roots of the model legume Medicago truncatula, is regulated during the nodulation process. Early inductions were detected 15 min and 3-4 days post-inoculation (dpi). The very early induction of CPK3 messengers was also present in inoculated M. truncatula dmi mutants and in wild-type roots subjected to salt stress, indicating that this rapid response is probably stress-related. In contrast, the later response was concomitant with cortical cell division and the formation of nodule primordia, and was not observed in wild-type roots inoculated with nod (-) strains. This late induction correlated with a change in the subcellular distribution of CDPK activities. Accordingly, an anti-MtCPK3 antibody detected two bands in soluble root extracts and one in the particulate fraction. CPK3::GFP fusions are targeted to the plasma membrane in epidermal onion cells, a localization that depends on myristoylation and palmitoylation sites of the protein, suggesting a dual subcellular localization. MtCPK3 mRNA and protein were also up-regulated by cytokinin treatment, a hormone linked to the regulation of cortical cell division and other nodulation-related responses. An RNAi-CDPK construction was used to silence CPK3 in Agrobacterium rhizogenes-transformed roots. Although no major phenotype was detected in these roots, when infected with rhizobia, the total number of nodules was, on average, twofold higher than in controls. This correlates with the lack of MtCPK3 induction in the inoculated super-nodulator sunn mutant. Our results suggest that CPK3 participates in the regulation of the symbiotic interaction.  相似文献   
157.
158.
High-mobility group box 1 (HMGB1) protein: friend and foe   总被引:11,自引:0,他引:11  
  相似文献   
159.
Chromosome identities were assigned to 15 linkage groups of the RFLP joinmap developed from four intraspecific cotton (Gossypium hirsutum L.) populations with different genetic backgrounds (Acala, Delta, and Texas Plains). The linkage groups were assigned to chromosomes by deficiency analysis of probes in the previously published joinmap, based on genomic DNA from hypoaneuploid chromosome substitution lines. These findings were integrated with QTL identification for multiple fiber and yield traits. Overall results revealed the presence of 63 QTLs on five different chromosomes of the A subgenome (chromosomes-03, -07, -09, -10, and -12) and 29 QTLs on the three different D subgenome (chromosomes-14 Lo, -20, and the long arm of -26). Linkage group-1 (chromosome-03) harbored 26 QTLs, covering 117 cM with 54 RFLP loci. Linkage group-2, (the long arm of chromosome-26) harbored 19 QTLs, covering 77.6 cM with 27 RFLP loci. Approximately 49% of the putative 92 QTLs for agronomic and fiber quality traits were placed on the above two major joinmap linkage groups, which correspond to just two different chromosomes, indicating that cotton chromosomes may have islands of high and low meiotic recombination like some other eukaryotic organisms. In addition, it reveals highly recombined and putative gene abundant regions in the cotton genome. QTLs for fiber quality traits in certain regions are located between two RFLP markers with an average of less than one cM (approximately 0.4-0.6 Mb) and possibly represent targets for map-based cloning. Identification of chromosomal location of RFLP markers common to different intra- and interspecific-populations will facilitate development of portable framework markers, as well as genetic and physical mapping of the cotton genome.  相似文献   
160.
Biological treatments were applied to fresh coffee pulp (CoP) to improve its nutritive value for monogastric animals by reducing its content of cellulose and antinutritional factors (ANFs) such as total phenols, tannins and caffeine. Treatments were: (1) ensiling with 0, 50 and 100 gkg(-1) molasses for 2 and 3 months, (2) aerobic decomposition for 0, 7, 14, 21, 28, 35 and 42 days, (3) aerobic bacterial inoculation (Bacillus sp.) for 0, 7, 14, 21 and 28 days. Ensiled CoP (E-CoP) showed higher fat and ash contents than oven-dried-CoP (OD-CoP; P<0.05). Similarly, true protein values tended to increase. The cellulose and total phenols levels of E-CoP were lower than OD-CoP (P<0.05). The E-CoP tannins levels tended to be lower than OD-CoP whereas caffeine levels remained unaffected. Improvement in the nutritional quality of E-CoP was associated with higher fat and protein contents and reduction of cellulose, total phenols and tannins. The aerobic decomposition treatment improved the nutritional quality of CoP by increasing true protein and fat contents. In addition, total phenols, tannins, caffeine and cellulose contents were reduced by an increase in treatment time (P<0.05). Bacterial treatment increased the protein content of CoP after 21 days (from 137 to 392 gkg(-1)) and decreased it after 28 days. Cellulose, total phenols, tannins and caffeine contents reduced with an increase in time of bacterial degradation. Bacterial treatment improved the CoP quality by increasing protein content and reducing cellulose and ANFs, especially after 21 days of treatment. Both the aerobic decomposition (after 21-28 days) and the aerobic bacterial degradation of CoP (after 21 days) appeared more suitable to improve the nutritional quality of CoP than the ensiling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号