首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   846篇
  免费   59篇
  2023年   3篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   9篇
  2017年   5篇
  2016年   12篇
  2015年   34篇
  2014年   31篇
  2013年   42篇
  2012年   45篇
  2011年   60篇
  2010年   30篇
  2009年   22篇
  2008年   47篇
  2007年   54篇
  2006年   52篇
  2005年   63篇
  2004年   60篇
  2003年   43篇
  2002年   64篇
  2001年   11篇
  2000年   7篇
  1999年   17篇
  1998年   14篇
  1997年   12篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   19篇
  1992年   9篇
  1991年   5篇
  1990年   11篇
  1989年   7篇
  1986年   5篇
  1985年   4篇
  1984年   11篇
  1983年   3篇
  1982年   6篇
  1981年   4篇
  1980年   4篇
  1979年   7篇
  1978年   5篇
  1977年   3篇
  1976年   2篇
  1975年   6篇
  1974年   2篇
  1972年   4篇
  1962年   2篇
  1961年   2篇
排序方式: 共有905条查询结果,搜索用时 31 毫秒
71.
Asparagine‐linked glycosylation is a common post‐translational modification of proteins catalyzed by oligosaccharyltransferase that is important in regulating many aspects of protein function. Analysis of protein glycosylation, including glycoproteomic measurement of the site‐specific extent of glycosylation, remains challenging. Here, we developed methods combining enzymatic deglycosylation and protease digestion with SWATH‐MS to enable automated measurement of site‐specific occupancy at many glycosylation sites. Deglycosylation with peptide‐endoglycosidase H, leaving a remnant N‐acetylglucosamine on asparagines previously carrying high‐mannose glycans, followed by trypsin digestion allowed robust automated measurement of occupancy at many sites. Combining deglycosylation with the more general peptide‐N‐glycosidase F enzyme with AspN protease digest allowed robust automated differentiation of nonglycosylated and deglycosylated forms of a given glycosylation site. Ratiometric analysis of deglycosylated peptides and the total intensities of all peptides from the corresponding proteins allowed relative quantification of site‐specific glycosylation occupancy between yeast strains with various isoforms of oligosaccharyltransferase. This approach also allowed robust measurement of glycosylation sites in human salivary glycoproteins. This method for automated relative quantification of site‐specific glycosylation occupancy will be a useful tool for research with model systems and clinical samples.  相似文献   
72.
Aberrant glycosylation occurs in the majority of human cancers and changes in mucin-type O-glycosylation are key events that play a role in the induction of invasion and metastases. These changes generate novel cancer-specific glyco-antigens that can interact with cells of the immune system through carbohydrate binding lectins. Two glyco-epitopes that are found expressed by many carcinomas are Tn (GalNAc-Ser/Thr) and STn (NeuAcα2,6GalNAc-Ser/Thr). These glycans can be carried on many mucin-type glycoproteins including MUC1. We show that the majority of breast cancers carry Tn within the same cell and in close proximity to extended glycan T (Galβ1,3GalNAc) the addition of Gal to the GalNAc being catalysed by the T synthase. The presence of active T synthase suggests that loss of the private chaperone for T synthase, COSMC, does not explain the expression of Tn and STn in breast cancer cells. We show that MUC1 carrying both Tn or STn can bind to the C-type lectin MGL and using atomic force microscopy show that they bind to MGL with a similar deadadhesion force. Tumour associated STn is associated with poor prognosis and resistance to chemotherapy in breast carcinomas, inhibition of DC maturation, DC apoptosis and inhibition of NK activity. As engagement of MGL in the absence of TLR triggering may lead to anergy, the binding of MUC1-STn to MGL may be in part responsible for some of the characteristics of STn expressing tumours.  相似文献   
73.
74.
75.
Meat intake is associated with the risk of colorectal cancer. The objective of this systematic review was to evaluate interactions between meat intake and genetic variation in order to identify biological pathways involved in meat carcinogenesis. We performed a literature search of PubMed and Embase using “interaction”, “meat”, “polymorphisms”, and “colorectal cancer”, and data on meat–gene interactions were extracted. The studies were divided according to whether information on meat intake was collected prospectively or retrospectively. In prospective studies, interactions between meat intake and polymorphisms in PTGS2 (encoding COX-2), ABCB1, IL10, NFKB1, MSH3, XPC (Pint = 0.006, 0.01, 0.04, 0.03, 0.002, 0.01, respectively), but not IL1B, HMOX1, ABCC2, ABCG2, NR1I2 (encoding PXR), NR1H2 (encoding LXR), NAT1, NAT2, MSH6, or MLH1 in relation to CRC were found. Interaction between a polymorphism in XPC and meat was found in one prospective and one case–control study; however, the directions of the risk estimates were opposite. Thus, none of the findings were replicated. The results from this systematic review suggest that genetic variation in the inflammatory response and DNA repair pathway is involved in meat-related colorectal carcinogenesis, whereas no support for the involvement of heme and iron from meat or cooking mutagens was found. Further studies assessing interactions between meat intake and genetic variation in relation to CRC in large well-characterised prospective cohorts with relevant meat exposure are warranted.

Electronic supplementary material

The online version of this article (doi:10.1007/s12263-014-0448-9) contains supplementary material, which is available to authorized users.  相似文献   
76.
Development of colorectal cancer (CRC) may result from a dysfunctional interplay between diet, gut microbes and the immune system. The ABC transport proteins ABCB1 (P-glycoprotein, Multidrug resistance protein 1, MDR1), ABCC2 (MRP2) and ABCG2 (BCRP) are involved in transport of various compounds across the epithelial barrier. Low mRNA level of ABCB1 has previously been identified as an early event in colorectal carcinogenesis (Andersen et al., PLoS One. 2013 Aug 19;8(8):e72119). ABCC2 and ABCG2 mRNA levels were assessed in intestinal tissue from 122 CRC cases, 106 adenoma cases (12 with severe dysplasia, 94 with mild-moderate dysplasia) and from 18 controls with normal endoscopy.We found significantly higher level of ABCC2 in adenomas with mild to moderate dysplasia and carcinoma tissue compared to the levels in unaffected tissue from the same individual (P = 0.037, P = 0.037, and P<0.0001) and in carcinoma and distant unaffected tissue from CRC cases compared to the level in the healthy individuals (P = 0.0046 and P = 0.036). Furthermore, ABCG2 mRNA levels were significantly lower in adenomas and carcinomas compared to the level in unaffected tissue from the same individuals and compared to tissue from healthy individuals (P<0.0001 for all). The level of ABCB2 in adjacent normal tissue was significantly higher than in tissue from healthy individuals (P = 0.011).In conclusion, this study found that ABCC2 and ABCG2 expression levels were altered already in mild/moderate dysplasia in carcinogenesis suggesting that these ABC transporters are involved in the early steps of carcinogenesis as previously reported for ABCB1. These results suggest that dysfunctional transport across the epithelial barrier may contribute to colorectal carcinogenesis.  相似文献   
77.
78.
Regulated generation of reactive oxygen species (ROS) is primarily accomplished by NADPH oxidases (Nox). Nox1 to Nox4 form a membrane-associated heterodimer with p22phox, creating the docking site for assembly of the activated oxidase. Signaling specificity is achieved by interaction with a complex network of cytosolic components. Nox4, an oxidase linked to cardiovascular disease, carcinogenesis, and pulmonary fibrosis, deviates from this model by displaying constitutive H2O2 production without requiring known regulators. Extensive Nox4/Nox2 chimera screening was initiated to pinpoint structural motifs essential for ROS generation and Nox subcellular localization. In summary, a matching B loop was crucial for catalytic activity of both Nox enzymes. Substitution of the carboxyl terminus was sufficient for converting Nox4 into a phorbol myristate acetate (PMA)-inducible phenotype, while Nox2-based chimeras never gained constitutive activity. Changing the Nox2 but not the Nox4 amino terminus abolished ROS generation. The unique heterodimerization of a functional Nox4/p22phox Y121H complex was dependent on the D loop. Nox4, Nox2, and functional Nox chimeras translocated to the plasma membrane. Cell surface localization of Nox4 or PMA-inducible Nox4 did not correlate with O2 generation. In contrast, Nox4 released H2O2 and promoted cell migration. Our work provides insights into Nox structure, regulation, and ROS output that will aid inhibitor design.The family of NADPH oxidases consists of seven members termed Nox/Duox that differ in their tissue expression profiles, modes of activation, reactive oxygen species (ROS) outputs, and physiological functions. Understanding their distinguishing features is a prerequisite for rational inhibitor design and thus targeted intervention in ROS-mediated pathophysiologies (4). The coexpression of different Nox isoforms, each with potentially distinct functional profiles, in the same cell type necessitates a more discriminating approach than application of pan-Nox inhibitors. Detailed structure-function studies are necessary to identify unique regions and their impact with respect to catalytic function or localization of the enzyme. All Nox/Duox enzymes share a Nox backbone with six predicted transmembrane domains and an intracellular carboxyl-terminal domain which harbors FAD and NADPH binding sites. Nox5 and Duox1/2 enzymes contain additional structural elements such as amino terminal EF-hand motifs, a hallmark of their regulation by the intracellular calcium concentration (13, 30).The founding member of the NADPH oxidase family, the phagocyte oxidase, consists of membrane-bound Nox2 in a complex with the smaller subunit p22phox (3). Heterodimerization of these two proteins is required for maturation and translocation of the enzyme complex to the plasma membrane or to intracellular vesicles. The Nox family members Nox1, Nox3, and Nox4 follow this paradigm (1, 14, 21, 25, 31). Heterodimer formation and association of the Nox/p22phox complex at particular cellular membranes is essential for catalytic activity, i.e., for ROS generation. Nox2, and to a lesser degree Nox1 and Nox3, remain dormant under resting conditions and rely on stimulus-dependent translocation and assembly of oxidase components such as p47phox and p67phox, or NoxO1 and NoxA1 in the case of Nox1 and Nox3 (16). These steps, together with activation and translocation of the GTPase Rac, ultimately lead to the assembled, catalytically active oxidase and to ROS generation.Nox4 differs from the usual theme of multimeric assembly of active NADPH oxidases found in Nox1 to Nox3 (21, 22, 28, 32). Constitutive H2O2 production by Nox4 localized at perinuclear vesicles has been reported (1, 21, 28). Since NADPH oxidases catalyze the one-electron reduction of molecular oxygen to superoxide anion, the current dogma suggests that Nox4 generates intracellular superoxide. The superoxide produced will then dismutate rapidly to H2O2, diffusing from the cell into the extracellular milieu. Cytosolic proteins, which regulate the activity of Nox1 to Nox3 by binding to the carboxyl-terminal domains of Nox1 to Nox3, seem to be irrelevant for Nox4 function. The membrane-bound subunit p22phox is to date the only known protein associated with Nox1 to Nox4. Heterodimerization, translocation, and enzymatic function of these oxidases require p22phox. Recent structure-function analyses of complexes between Nox2 or Nox4 and the subunit p22phox documented specific regions and amino acid residues in p22phox necessary for complex formation and oxidase activity (35, 37). Interestingly, a p22phox mutant (p22phox Y121H) is capable of distinguishing between Nox1 to Nox3 and Nox4 by forming a functional complex only with Nox4, further suggesting unique structural features in Nox4 (35).In this study, we expand structure-function analysis of the oxidase complex by comparing Nox4/Nox2 chimeric enzymes with respect to NADPH oxidase activity, type of reactive oxygen species produced, requirement for additional oxidase components, and detailed subcellular localization.  相似文献   
79.
Acid/base homeostasis is one of the most difficult subdisciplines of physiology for medical students to master. A different approach, where theory and practice are linked, might help students develop a deeper understanding of acid/base homeostasis. We therefore set out to develop a laboratory exercise in acid/base physiology that would provide students with unambiguous and reproducible data that clearly would illustrate the theory in practice. The laboratory exercise was developed to include both metabolic acidosis and respiratory alkalosis. Data were collected from 56 groups of medical students that had participated in this laboratory exercise. The acquired data showed very consistent and solid findings after the development of both metabolic acidosis and respiratory alkalosis. All results were consistent with the appropriate diagnosis of the acid/base disorder. Not one single group failed to obtain data that were compatible with the diagnosis; it was only the degree of acidosis/alkalosis and compensation that varied.  相似文献   
80.
2′-O,4′-C-methylene-linked ribonucleotide derivatives, named LNA (locked nucleic acid) and BNA (bridged nucleic acid) are nucleic acid analogoues that have shown high-affinity recognition of DNA and RNA, and the employment of LNA oligomers for antisense activity, gene regulation and nucleic acid diagnostics seems promising. Here we show kinetic and thermodynamic results on the interaction of a series of 10 bases long LNA–DNA mixmers, gabmers as well as full length LNA’s with the complementary DNA, RNA and LNA oligonucleotides in the presence and absence of 10 mM Mg2+- ions. Our results show no significant differences in the reaction thermodynamics and kinetics between the LNA species, only a tendency to stronger duplex formation with the gabmer and mixmer. Introduction of a few LNA’s thus may be a better strategy, than using full length LNA’s to obtain an oligonucleotide that markedly increases the strength of duplexes formed with the complementary DNA and RNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号