首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2809篇
  免费   212篇
  国内免费   3篇
  3024篇
  2021年   23篇
  2020年   24篇
  2018年   37篇
  2017年   28篇
  2016年   54篇
  2015年   81篇
  2014年   120篇
  2013年   162篇
  2012年   161篇
  2011年   174篇
  2010年   133篇
  2009年   95篇
  2008年   143篇
  2007年   164篇
  2006年   155篇
  2005年   136篇
  2004年   124篇
  2003年   136篇
  2002年   148篇
  2001年   42篇
  2000年   41篇
  1999年   48篇
  1998年   31篇
  1997年   30篇
  1996年   35篇
  1995年   31篇
  1994年   28篇
  1993年   24篇
  1992年   41篇
  1991年   28篇
  1990年   30篇
  1989年   26篇
  1988年   30篇
  1987年   32篇
  1986年   25篇
  1985年   27篇
  1984年   27篇
  1983年   29篇
  1982年   23篇
  1981年   22篇
  1980年   19篇
  1979年   13篇
  1978年   20篇
  1977年   18篇
  1976年   21篇
  1975年   14篇
  1974年   24篇
  1973年   22篇
  1972年   16篇
  1971年   21篇
排序方式: 共有3024条查询结果,搜索用时 0 毫秒
131.
Background and AimsSecondary metabolites are integral to multiple key plant processes (growth regulation, pollinator attraction and interactions with conspecifics, competitors and symbionts) yet their role in plant adaptation remains an underexplored area of research. Carnivorous plants use secondary metabolites to acquire nutrients from prey, but the extent of the role of secondary metabolites in plant carnivory is not known. We aimed to determine the extent of the role of secondary metabolites in facilitating carnivory of the Cape sundew, Drosera capensis.MethodsWe conducted metabolomic analysis of 72 plants in a time-series experiment before and after simulated prey capture. We used ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) and the retention time index to identify compounds in the leaf trap tissue that changed up to 72 h following simulated prey capture. We identified associated metabolic pathways, and cross-compared these compounds with metabolites previously known to be involved in carnivorous plants across taxa.Key ResultsFor the first time in a carnivorous plant, we have profiled the whole-leaf metabolome response to prey capture. Reliance on secondary plant metabolites was higher than previously thought – 2383 out of 3257 compounds in fed leaves had statistically significant concentration changes in comparison with unfed controls. Of these, ~34 compounds are also associated with carnivory in other species; 11 are unique to Nepenthales. At least 20 compounds had 10-fold changes in concentration, 12 of which had 30-fold changes and are typically associated with defence or attraction in non-carnivorous plants.ConclusionsSecondary plant metabolites are utilized in plant carnivory to an extent greater than previously thought – we found a whole-metabolome response to prey capture. Plant carnivory, at the metabolic level, likely evolved from at least two distinct functions: attraction and defence. Findings of this study support the hypothesis that secondary metabolites play an important role in plant diversification and adaptation to new environments.  相似文献   
132.
The intercalating nucleic acid (INA) presented in this paper is a novel 1-O-(1-pyrenylmethyl)glycerol DNA intercalator that induces high thermal affinity for complementary DNA. The duplex examined contained two INA intercalators, denoted X, inserted directly opposite each other: d(C(1)T(2)C(3)A(4)A(5)C(6)X(7)C(8)A(9)A(10)G(11)C(12)T(13)):d(A(14)G(15)C(16)T(17)-T(18)G(19)X(20)G(21)T(22)T(23)G(24)A(25)G(26)). Unlike most other nucleotide analogues, DNA with INA inserted has a lower affinity for hybridizing to complementary DNA with an INA inserted directly opposite than to complementary unmodified DNA. In this study we used two-dimensional (1)H NMR spectroscopy to determine a high-resolution solution structure of the weak INA-INA duplex. A modified ISPA approach was used to obtain interproton distance bounds from NOESY cross-peak intensities. These distance bounds were used as restraints in molecular dynamics (rMD) calculations. Twenty final structures were generated for the duplex from a B-type DNA starting structure. The root-mean-square deviation (RMSD) of the coordinates for the 20 structures of the complex was 1.95 A. This rather large value, together with broad lines in the area of insertion, reflect the high degree of internal motion in the complex. The determination of the structure revealed that both intercalators were situated in the center of the helix, stacking with each other and the neighboring nucleobases. The intercalation of the INAs caused an unwinding of the helix in the insertion area, creating a ladderlike structure. The structural changes observed upon intercalation were mainly of local character; however, a broadening of the minor groove was found throughout the helix.  相似文献   
133.
Tissue plasminogen activator (tPA) is a serine protease involved in the degradation of blood clots through the activation of plasminogen to plasmin. Here we report on the identification of tPA as a specific protease able to activate platelet-derived growth factor C (PDGF-C). The newly identified PDGF-C is secreted as a latent dimeric factor (PDGF-CC) that upon proteolytic removal of the N-terminal CUB domains becomes a PDGF receptor alpha agonist. The CUB domains in PDGF-CC directly interact with tPA, and fibroblasts from tPA-deficient mice fail to activate latent PDGF-CC. We further demonstrate that growth of primary fibroblasts in culture is dependent on a tPA-mediated cleavage of latent PDGF-CC, generating a growth stimulatory loop. Immunohistochemical analysis showed similar expression patterns of PDGF-C and tPA in developing mouse embryos and in tumors, indicating both autocrine and paracrine modes of activation of PDGF receptor-mediated signaling pathways. The identification of tPA as an activator of PDGF signaling establishes a novel role for the protease in normal and pathological tissue growth and maintenance, distinct from its well-known role in plasminogen activation and fibrinolysis.  相似文献   
134.
The neuronal ceroid lipofuscinoses (NCL) are a group of progressive neurodegenerative disorders characterized by the deposition of autofluorescent proteinaceous fingerprint or curvilinear bodies. We have found that CLN3, the gene underlying the juvenile form of NCL, is very tightly linked to the dinucleotide repeat marker D16S285 on chromosome 16. Integration of D16S285 into the genetic map of chromosome 16 by using the Centre d'Etude du Polymorphisme Humain panel of reference pedigrees yielded a favored marker order in the CLN3 region of qtel-D16S150-.08-D16S285-.04-D16S148-.02-D16S 67-ptel. The most likely location of the disease gene, near D16S285 in the D16S150-D16S148 interval, was favored by odds of greater than 10(4):1 over the adjacent D16S148-D16S67 interval, which was recently reported as the minimum candidate region. Analysis of D16S285 in pedigrees with late-infantile NCL virtually excluded the CLN3 region, suggesting that these two forms of NCL are genetically distinct.  相似文献   
135.
Limited sample volume is often an obstacle in clinical research and one way to circumvent this is to use multiplex techniques where several different analytes are simultaneously measured. There is a multitude of different platforms that can be used for multiplexing and their uniqueness and similarities will be described. Multivariate analysis is a powerful tool for extracting information from multiplex data. An introduction to one such algorithm is presented followed by examples from the literature, in the field of neurodegeneration, where multiplex and multivariate methods have been used.  相似文献   
136.
Water permeability through single-file channels is affected by intrinsic factors such as their size and polarity and by external determinants like their lipid environment in the membrane. Previous computational studies revealed that the obstruction of the channel by lipid headgroups can be long-lived, in the range of nanoseconds, and that pore-length-matching membrane mimetics could speed up water permeability. To test the hypothesis of lipid-channel interactions modulating channel permeability, we designed different gramicidin A derivatives with attached acyl chains. By combining extensive molecular-dynamics simulations and single-channel water permeation measurements, we show that by tuning lipid-channel interactions, these modifications reduce the presence of lipid headgroups in the pore, which leads to a clear and selective increase in their water permeability.  相似文献   
137.
It is still unclear whether expanded and activated regulatory T cells (Tregs) in chronic viral infections can influence primary immune responses against superinfections with unrelated viruses. Expanded Tregs found in the spleens of chronically Friend virus (FV)-infected mice decreased murine cytomegalovirus (mCMV)-specific CD8+ T cell responses during acute mCMV superinfection. This suppression of mCMV-specific T cell immunity was found only in organs with FV-induced Treg expansion. Surprisingly, acute mCMV infection itself did not expand or activate Tregs.  相似文献   
138.
Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.  相似文献   
139.
Endothelial cells (EC) control vascular smooth muscle cell (VSMC) tone by release of paracrine factors. VSMC may also influence the EC layer, and therefore, the present study hypothesized that the opening of large-conductance Ca(2+) activated K(+) (BK(Ca)) channels may indirectly modulate EC hyperpolarization and nitric oxide (NO) release via myoendothelial gap junctions (MEGJ). To address this hypothesis 'in situ' EC ion current recordings, isolated VSMC patch clamp recordings, and simultaneous measurements of NO concentration and relaxation were conducted using segments of the rat superior mesenteric artery. In arteries constricted by α(1)-adrenoceptor activation, ACh (1 μM) evoked EC outward currents, vasorelaxation, and NO release. In contrast to preincubation with iberiotoxin (IbTx, 100nM) application of IbTx after ACh decreased EC outward currents, NO release and vasorelaxation. Furthermore, in phenylephrine (Phe)-contracted arteries treated with a gap junction uncoupler, cabenoxolone (CBX), IbTx failed to decrease ACh-evoked EC outward currents. In addition, CBX decreased EC outward currents, time constant of the capacitative transients, input capacitance, and increased input resistance. In isolated VSMC CBX did not affect BK(Ca) currents. Immunohistochemistry revealed only BK(Ca) channel positive staining in the VSMC layer. Therefore, the present results suggest that BK(Ca) channels are expressed in the VSMC, and that Phe by activation of VSMC BK(Ca) channels modulates ACh-evoked EC outward currents, NO release and vasorelaxation via MEGJ in rat superior mesenteric artery.  相似文献   
140.
Eukaryotic translation initiation factor eIF4A is a DEAD-box helicase that resolves secondary structure elements in the 5''-UTR of mRNAs during ribosome scanning. Its RNA-stimulated ATPase and ATP-dependent helicase activities are enhanced by other translation initiation factors, but the underlying mechanisms are unclear. DEAD-box proteins alternate between open and closed conformations during RNA unwinding. The transition to the closed conformation is linked to duplex destabilization. eIF4A is a special DEAD-box protein that can adopt three different conformations, an open state in the absence of ligands, a half-open state stabilized by the translation initiation factor eIF4G and a closed state in the presence of eIF4G and eIF4B. We show here that eIF4A alone does not measurably sample the closed conformation. The translation initiation factors eIF4B and eIF4G accelerate the eIF4A conformational cycle. eIF4G increases the rate of closing more than the opening rate, and eIF4B selectively increases the closing rate. Strikingly, the rate constants and the effect of eIF4B are different for different RNAs, and are related to the presence of single-stranded regions. Modulating the kinetics of the eIF4A conformational cycle is thus central for the multi-layered regulation of its activity, and for its role as a regulatory hub in translation initiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号