首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   13篇
  2021年   4篇
  2020年   4篇
  2019年   7篇
  2018年   7篇
  2017年   8篇
  2016年   7篇
  2015年   10篇
  2014年   18篇
  2013年   13篇
  2012年   16篇
  2011年   18篇
  2010年   11篇
  2009年   8篇
  2008年   13篇
  2007年   6篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   6篇
  2002年   4篇
  2001年   4篇
  1997年   1篇
  1996年   2篇
  1989年   3篇
  1972年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
101.
Recent studies have reported that dim light at night (dLAN) is associated with risks of cardiovascular complications, such as hypertension and carotid atherosclerosis; however, little is known about the underlying mechanism. Here, we evaluated the effect of dLAN on the cerebrovascular system by analyzing cerebral hemodynamic oscillations using near-infrared spectroscopy (NIRS). Fourteen healthy male subjects underwent polysomnography coupled with cerebral NIRS. The data collected during sleep with dim light (10 lux) were compared with those collected during sleep under the control dark conditions for the sleep structure, cerebral hemodynamic oscillations, heart rate variability (HRV), and their electroencephalographic (EEG) power spectrum. Power spectral analysis was applied to oxy-hemoglobin concentrations calculated from the NIRS signal. Spectral densities over endothelial very-low-frequency oscillations (VLFOs) (0.003–0.02 Hz), neurogenic VLFOs (0.02–0.04 Hz), myogenic low-frequency oscillations (LFOs) (0.04–0.15 Hz), and total LFOs (0.003–0.15 Hz) were obtained for each sleep stage. The polysomnographic data revealed an increase in the N2 stage under the dLAN conditions. The spectral analysis of cerebral hemodynamics showed that the total LFOs increased significantly during slow-wave sleep (SWS) and decreased during rapid eye movement (REM) sleep. Specifically, endothelial (median of normalized value, 0.46 vs. 0.72, p = 0.019) and neurogenic (median, 0.58 vs. 0.84, p = 0.019) VLFOs were enhanced during SWS, whereas endothelial VLFOs (median, 1.93 vs. 1.47, p = 0.030) were attenuated during REM sleep. HRV analysis exhibited altered spectral densities during SWS induced by dLAN, including an increase in very-low-frequency and decreases in low-frequency and high-frequency ranges. In the EEG power spectral analysis, no significant difference was detected between the control and dLAN conditions. In conclusion, dLAN can disturb cerebral hemodynamics via the endothelial and autonomic systems without cortical involvement, predominantly during SWS, which might represent an underlying mechanism of the increased cerebrovascular risk associated with light exposure during sleep.  相似文献   
102.
The phospholipase D1 (PLD1) cDNA, designated PoPLD, encoding a predicted protein of 1053 amino acids in olive flounder (Paralichthys olivaceus) has been cloned. The deduced amino acid sequence shares high identity with that of PLD1s and PLD2 in human, rat and mouse. The phylogenic analysis and sequence comparison of PoPLD with other PLD isozymes were found to be closely related to the PLD1 isozyme in primary structure. The tissue expression analysis of PoPLD showed that the mRNA of PoPLD was predominantly expressed in the brain, gullet, muscle, stomach, head kidney, pyloric caeca, intestine and gill. The expression of the PoPLD gene was examined in various tissues of flounder by RT-PCR following stimulation with LPS and compared also with that of the inflammatory cytokines IL-1beta and IL-8 in various tissues of the stimulated flounder. This provides indirect evidence that PLD1 might have a relevant role in immune responses against pathogens and in inflammation. In addition, the recombinant protein of PoPLD (GFP-PoPLD), which demonstrated a phosphatidylcholine (PC)-hydrolyzing activity, was partially localized as a distinct ring-shaped form surrounding the rim of the nucleus in EPC cells. Together, our results suggest that PoPLD is similar to the mammalian PLD1 isoform, is generally widespread within olive flounder tissue, might have a relevant role in the fish immune system against pathogens and specifically may be localized in the subcellular membranes of the nuclear rim in EPC cells.  相似文献   
103.
104.
To develop an efficient screening method for detection of the transgene in Chinese cabbage (Brassica rapa spp. pekinensis) utilizing Basta spray, optimal conditions for Basta application were examined in this study. Two transgenic Chinese cabbage lines were obtained through Agrobacterium-mediated transformation and used as transgenic positive controls in the Basta screening experiment. Differential concentrations of glufosinate-ammonium were sprayed into three different growth stages of 12 commercial Chinese cabbage cultivars. The results showed that no plants could survive higher than 0.05% glufosinate-ammonium, and plants at the 2–3 leaf stage were most vulnerable to glufosinate-ammonium. On the other hand, no damage was observed in the transgenic control plants. Reliability of the Basta spray method was proven by showing perfect co-segregation of the tolerance to glufosinate-ammonium and the presence of the bar gene in T1 segregating populations of the transgenic lines, as revealed by both PCR and Southern blot analyses. Using the developed Basta screening method, we tried to investigate the transgene flow through pollen dispersal, but failed to detect any transgene-containing non-transgenic Chinese cabbages whose parents had been planted adjacent to transgenic Chinese cabbages in field conditions. However, the transgene was successfully detected using Basta spray from the non-transgenic plants bearing the transgene introduced by hand-pollination. Since the Basta spray method developed in this study is easy to apply and economical, it will be a valuable tool for understanding the mechanism of gene flow through pollen transfer and for establishing a biosafety test protocol for genetically modified (GM) Chinese cabbage cultivars.  相似文献   
105.
106.
Bacterial cellulose nanofiber (CNF) is a polymer with a wide range of potential industrial applications. Several Komagataeibacter species, including Komagataeibacter xylinus as a model organism, produce CNF. However, the industrial application of CNF has been hampered by inefficient CNF production, necessitating metabolic engineering for the enhanced CNF production. Here, we present complete genome sequence and a genome-scale metabolic model KxyMBEL1810 of K. xylinus DSM 2325 for metabolic engineering applications. Genome analysis of this bacterium revealed that a set of genes associated with CNF biosynthesis and regulation were present in this bacterium, which were also conserved in another six representative Komagataeibacter species having complete genome information. To better understand the metabolic characteristics of K. xylinus DSM 2325, KxyMBEL1810 was reconstructed using genome annotation data, relevant computational resources and experimental growth data generated in this study. Random sampling and correlation analysis of the KxyMBEL1810 predicted pgi and gnd genes as novel overexpression targets for the enhanced CNF production. Among engineered K. xylinus strains individually overexpressing heterologous pgi and gnd genes, either from Escherichia coli or Corynebacterium glutamicum, batch fermentation of a strain overexpressing the E. coli pgi gene produced 3.15 g/L of CNF in a complex medium containing glucose, which was the best CNF concentration achieved in this study, and 115.8% higher than that (1.46 g/L) obtained from the control strain. Genome sequence data and KxyMBEL1810 generated in this study should be useful resources for metabolic engineering of K. xylinus for the enhanced CNF production.  相似文献   
107.
108.
Cytoskeleton-associated protein 2 (CKAP2), also known as tumor-associated microtubule-associated protein (TMAP), is a novel microtubule-associated protein that is frequently upregulated in various malignances. However, its cellular functions remain unknown. A previous study has shown that its protein level begins to increase during G(1)/S and peaks at G(2)/M, after which it decreases abruptly. Ectopic overexpression of TMAP/CKAP2 induced microtubule bundling related to increased microtubule stability. TMAP/CKAP2 overexpression also resulted in cell cycle arrest during mitosis due to a defect in centrosome separation and subsequent formation of a monopolar spindle. We also show that degradation of TMAP/CKAP2 during mitotic exit is mediated by the anaphase-promoting complex bound to Cdh1 and that the KEN box motif near the N terminus is necessary for its destruction. Compared to the wild type, expression of a nondegradable mutant of TMAP/CKAP2 significantly increased the occurrence of spindle defects and cytokinesis failure. These results suggest that TMAP/CKAP2 plays a role in the assembly and maintenance of mitotic spindles, presumably by regulating microtubule dynamics, and its destruction during mitotic exit serves an important role in the completion of cytokinesis and in the maintenance of spindle bipolarity in the next mitosis.  相似文献   
109.
This study evaluated bacterial etiology and antibiotic susceptibility in patients diagnosed with community-acquired perforated appendicitis over a 12-year-period. We retrospectively reviewed records of adult patients diagnosed with perforated appendicitis at an 800-bed teaching hospital between January 2000 and December 2011. In total, 415 culture-positive perforated appendicitis cases were analyzed. Escherichia coli was the most common pathogen (277/415, 66.7%), followed by Streptococcus species (61/415, 14.7%). The susceptibility of E. coli to ampicillin, piperacillin/tazobactam, ceftriaxone, cefepime, amikacin, gentamicin, and imipenem was 35.1%, 97.1%, 97.0%, 98.2%, 98.9%, 81.8%, and 100%, respectively. The overall susceptibility of E. coli to quinolones (ciprofloxacin or levofloxacin) was 78.7%. During the study period, univariate logistic regression analysis showed a significant decrease in E. coli susceptibility to quinolones (OR = 0.91, 95% CI 0.84–0.99, P = 0.040). We therefore do not recommend quinolones as empirical therapy for community-acquired perforated appendicitis.  相似文献   
110.
Activation of complement is one of the earliest immune responses to exogenous threats, resulting in various cleavage products including anaphylatoxin C3a. In addition to its contribution to host defense, C3a has been shown to mediate Th2 responses in animal models of asthma. However, the role of C3a on pulmonary Th17 responses during allergic inflammation remains unclear. Here, we show that mice deficient in C3a receptor (C3aR) exhibited (i) higher percentages of endogenous IL-17-producing CD4+ T cells in the lungs, (ii) higher amounts of IL-17 in the bronchoalveolar lavage fluid, and (iii) more neutrophils in the lungs than wild-type mice when challenged with intranasal allergens. Moreover, adoptive transfer experiments showed that the frequencies of antigen-specific IL-17-producing CD4+ T cells were significantly higher in the lungs and bronchial lymph nodes of C3aR-deficient recipients than those of wild-types recipients. Bone-marrow reconstitution study indicated that C3aR-deficiency on hematopoietic cells was required for the increased Th17 responses. Furthermore, C3aR-deficient mice exhibited increased percentages of Foxp3+ regulatory T cells; however, depletion of these cells minimally affected the induction of antigen-specific Th17 cell population in the lungs. Neutralization of IL-17 significantly reduced the number of neutrophils in bronchoalveolar lavage fluid of C3aR-deficient mice. Our findings demonstrate that C3a signals negatively regulate antigen-specific Th17 responses during allergic lung inflammation and the size of Foxp3+ regulatory T cell population in the periphery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号