首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   15篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   6篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   2篇
  2015年   9篇
  2014年   19篇
  2013年   10篇
  2012年   22篇
  2011年   20篇
  2010年   9篇
  2009年   8篇
  2008年   8篇
  2007年   10篇
  2006年   11篇
  2005年   14篇
  2004年   9篇
  2003年   7篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1997年   2篇
  1994年   5篇
  1993年   4篇
  1992年   11篇
  1991年   10篇
  1990年   7篇
  1989年   9篇
  1988年   5篇
  1987年   6篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1982年   2篇
  1980年   4篇
  1979年   8篇
  1978年   6篇
  1977年   13篇
  1975年   7篇
  1973年   4篇
  1972年   2篇
  1971年   2篇
  1970年   5篇
  1969年   2篇
  1967年   4篇
  1962年   1篇
  1959年   1篇
排序方式: 共有330条查询结果,搜索用时 31 毫秒
61.
Present studies deal with the role of inhibin in proliferation and growth. The effect of inhibin on incorporation of 3H-thymidine in prostatic DNA in vivo as well as by NRK-49F and Balb/c3T3 cell lines in vitro, was investigated. Also studied the immunocytochemical localization of inhibin in normally proliferating and differentiated tissues of human prostate and endometrium. The in vivo studies revealed a suppression of 3H-thymidine uptake both in ventral (33%) and dorsolateral (26%) lobes of rat prostate. Interestingly, the histology of inhibin treated rat prostate manifested amidst the epithelial lining, an appearance of apoptotic bodies which are considered to be indicative of cell death. Further, the immunocytochemical studies for localization of inhibin showed intense staining in the differentiated human prostate and endometrium as compared to the respective proliferative tissues. Is inhibin kept suppressed in these proliferating tissues, because it is antiproliferative? The present in vitro experiments demonstrated that, at low inhibin concentrations, the incorporation of 3H-thymidine is stimulated while at higher doses it is suppressed. Thus, it is clear that prostatic inhibin seems to have a concentration-dependent dual role in the regulation of DNA synthesis.  相似文献   
62.
63.
64.
65.
Plant pathogenic organisms are known to infect host cell using various range of secretory proteins. Amongst all other secretion systems, type III secretion system (T3SS) is a key mechanism for bacterial pathogenesis for establishing and maintaining infection into the host. Expression levels of seven genes viz. avrXacE1, avrXacE2, hpaA and hrpG along with bacterial endogenous control lrp (leucine-responsive protein) were studied. The pathogenic organisms selected for the present study includes Enterobacter cloacae, Enterobacter spp., Pantoea ananatis, Xanthomonas campestris pv. Citri, Pantoea agglomerans, Ochrobactrum anthropi and Erwinia chrysanthemi. P. agglomerans and Enterobacter spp. gave high expression of above-mentioned virulence genes compared to Xanthomonas, while E. cloacae and P. ananatis showed similar expression with that of Xanthomonas. The detailed relationship of the expression profiles with respect to the selected organisms is discussed.  相似文献   
66.
The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has created an urgent need for new therapeutic agents capable of combating this threat. We have previously reported on the discovery of novel inhibitors targeting enzymes involved in the biosynthesis of wall teichoic acid (WTA) and demonstrated that these agents can restore β-lactam efficacy against MRSA. In those previous reports pathway engagement of inhibitors was demonstrated by reduction in WTA levels measured by polyacrylamide gel electrophoresis. To enable a more rigorous analysis of these inhibitors we sought to develop a quantitative method for measuring whole-cell reductions in WTA. Herein we describe a robust methodology for hydrolyzing polymeric WTA to the monomeric component ribitol-N-acetylglucosamine coupled with measurement by LC-MS/MS. Critical elements of the protocol were found to include the time and temperature of hydrofluoric acid-mediated hydrolysis of polymeric WTA and optimization of these parameters is fully described. Most significantly, the assay enabled accurate and reproducible measurement of depletion EC50s for tunicamycin and representatives from the novel class of TarO inhibitors, the tarocins. The method described can readily be adapted to quantifying levels of WTA in tissue homogenates from a murine model of infection, highlighting the applicability for both in vitro and in vivo characterizations.  相似文献   
67.
There is a groundswell of interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we computationally identify the first biological thiosulfate sensor and an improved tetrathionate sensor, both two‐component systems from marine Shewanella species, and validate them in laboratory Escherichia coli. Then, we port these sensors into a gut‐adapted probiotic E. coli strain, and develop a method based upon oral gavage and flow cytometry of colon and fecal samples to demonstrate that colon inflammation (colitis) activates the thiosulfate sensor in mice harboring native gut microbiota. Our thiosulfate sensor may have applications in bacterial diagnostics or therapeutics. Finally, our approach can be replicated for a wide range of bacterial sensors and should thus enable a new class of minimally invasive studies of gut microbiota pathways.  相似文献   
68.
Copper metabolism Murr1 domain 1 (COMMD1) is a 21-kDa protein involved in copper export from the liver, NF-kappaB signaling, HIV infection, and sodium transport. The precise function of COMMD and the mechanism through which COMMD1 performs its multiple roles are not understood. Recombinant COMMD1 is a soluble protein, yet in cells COMMD1 is largely seen as targeted to cellular membranes. Using co-localization with organelle markers and cell fractionation, we determined that COMMD1 is located in the vesicles of the endocytic pathway, whereas little COMMD1 is detected in either the trans-Golgi network or lysosomes. The mechanism of COMMD1 recruitment to cell membranes was investigated using lipid-spotted arrays and liposomes. COMMD1 specifically binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in the absence of other proteins and does not bind structural lipids; the phosphorylation of PtdIns at position 4 is essential for COMMD1 binding. Proteolytic sensitivity and molecular modeling experiments identified two distinct domains in the structure of COMMD1. The C-terminal domain appears sufficient for lipid binding, because both the full-length and C-terminal domain proteins bind to PtdIns(4,5)P2. In native conditions, endogenous COMMD1 forms large oligomeric complexes both in the cytosol and at the membrane; interaction with PtdIns(4,5)P2 increases the stability of oligomers. Altogether, our results suggest that COMMD1 is a scaffold protein in a distinct sub-compartment of endocytic pathway and offer first clues to its role as a regulator of structurally unrelated membrane transporters.  相似文献   
69.
Sheth PR  Liu Y  Hesson T  Zhao J  Vilenchik L  Liu YH  Mayhood TW  Le HV 《Biochemistry》2011,50(37):7964-7976
Kinases catalyze the transfer of γ-phosphate from ATP to substrate protein residues triggering signaling pathways responsible for a plethora of cellular events. Isolation and production of homogeneous preparations of kinases in their fully active forms is important for accurate in vitro measurements of activity, stability, and ligand binding properties of these proteins. Previous studies have shown that MEK1 can be produced in its active phosphorylated form by coexpression with RAF1 in insect cells. In this study, using activated MEK1 produced by in vitro activation by RAF1 (pMEK1(in?vitro)), we demonstrate that the simultaneous expression of RAF1 for production of activated MEK1 does not result in stoichiometric phosphorylation of MEK1. The pMEK1(in vitro) showed higher specific activity toward ERK2 protein substrate compared to the pMEK1 that was activated via coexpression with RAF1 (pMEK1(in situ)). The two pMEK1 preparations showed quantitative differences in the phosphorylation of T-loop residue serine 222 by Western blotting and mass spectrometry. Finally, pMEK1(in vitro) showed marked differences in the ligand binding properties compared to pMEK1(in?situ). Contrary to previous findings, pMEK1(in vitro) bound allosteric inhibitors U0126 and PD0325901 with a significantly lower affinity than pMEK1(in situ) as well as its unphosphorylated counterpart (npMEK1) as demonstrated by thermal-shift, AS-MS, and calorimetric studies. The differences in inhibitor binding affinity provide direct evidence that unphosphorylated and RAF1-phosphorylated MEK1 form distinct inhibitor sites.  相似文献   
70.

Background

Base of tongue (BOT) is a difficult subsite to examine clinically and radiographically. Yet, anatomic delineation of the primary tumor site, its extension to adjacent sites or across midline, and endophytic vs. exophytic extent are important characteristics for staging and treatment planning. We hypothesized that ultrasound could be used to visualize and describe BOT tumors.

Methods

Transcervical ultrasound was performed using a standardized protocol in cases and controls. Cases had suspected or confirmed BOT malignancy. Controls were healthy individuals without known malignancy.

Results

100% of BOT tumors were visualized. On ultrasound BOT tumors were hypoechoic (90.9%) with irregular margins (95.5%). Ultrasound could be used to characterize adjacent site involvement, midline extent, and endophytic extent, and visualize the lingual artery. No tumors were suspected for controls.

Conclusions

Ultrasonography can be used to transcervically visualize BOT tumors and provides clinically relevant characteristics that may not otherwise be appreciable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号