首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   4篇
  2023年   2篇
  2021年   2篇
  2020年   2篇
  2017年   1篇
  2015年   3篇
  2014年   5篇
  2013年   2篇
  2012年   10篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   5篇
  2004年   2篇
  2003年   2篇
  2002年   3篇
  1997年   1篇
  1994年   1篇
  1990年   2篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
41.
42.
The copper-transporting ATPase ATP7A has an essential role in human physiology. ATP7A transfers the copper cofactor to metalloenzymes within the secretory pathway; inactivation of ATP7A results in an untreatable neurodegenerative disorder, Menkes disease. Presently, the mechanism of ATP7A-mediated copper release into the secretory pathway is not understood. We demonstrate that the characteristic His/Met-rich segment Met(672)-Pro(707) (HM-loop) that connects the first two transmembrane segments of ATP7A is important for copper release. Mutations within this loop do not prevent the ability of ATP7A to form a phosphorylated intermediate during ATP hydrolysis but inhibit subsequent dephosphorylation, a step associated with copper release. The HM-loop inserted into a scaffold protein forms two structurally distinct binding sites and coordinates copper in a mixed His-Met environment with an ~2:1 stoichiometry. Binding of either copper or silver, a Cu(I) analog, induces structural changes in the loop. Mutations of 4 Met residues to Ile or two His-His pairs to Ala-Gly decrease affinity for copper. Altogether, the data suggest a two-step process, where copper released from the transport sites binds to the first His(Met)(2) site, triggering a structural change and binding to a second 2-coordinate His-His or His-Met site. We also show that copper binding within the HM-loop stabilizes Cu(I) and protects it from oxidation, which may further aid the transfer of copper from ATP7A to acceptor proteins. The mechanism of copper entry into the secretory pathway is discussed.  相似文献   
43.
P bodies and the control of mRNA translation and degradation   总被引:1,自引:0,他引:1  
Parker R  Sheth U 《Molecular cell》2007,25(5):635-646
  相似文献   
44.
RbfA, a 30S ribosome-binding factor, is a multicopy suppressor of a cold-sensitive C23U mutation of the 16S rRNA and is required for efficient processing of the 16S rRNA. At 37 degrees C, DeltarbfA cells show accumulation of ribosomal subunits and 16S rRNA precursor with a significantly reduced polysome profile in comparison with wild-type cells. RbfA is also a cold-shock protein essential for Escherichia coli cells to adapt to low temperature. In this study, we examined its association with the ribosome and its role in 16S rRNA processing and ribosome profiles at low temperature. In wild-type cells, following cold shock at 15 degrees C, the amount of free RbfA remained largely stable, while that of its 30S subunit-associated form became several times greater than that at 37 degrees C and a larger fraction of total 30S subunits was detected to be RbfA-containing. In DeltarbfA cells, the pre-16S rRNA amount increased after cold shock with a concomitant reduction of the mature 16S rRNA amount and the formation of polysomes was further reduced. A closer examination revealed that 30S ribosomal subunits of DeltarbfA cells at low temperature contained primarily pre-16S rRNA and little mature 16S rRNA. Our results indicate that the cold sensitivity of DeltarbfA cells is directly related to their lack of translation initiation-capable 30S subunits containing mature 16S rRNA at low temperature. Importantly, when the C-terminal 25 residue sequence was deleted, the resulting RbfADelta25 lost the abilities to stably associate with the 30S subunit and to suppress the dominant-negative, cold-sensitive phenotype of the C23U mutation in 16S rRNA but was able to suppress the 16S rRNA processing defect and the cold-sensitive phenotype of the DeltarbfA cells, suggesting that RbfA may interact with the 30S ribosome at more than one site or function in more than one fashion in assisting the 16S rRNA maturation at low temperature.  相似文献   
45.
The synthesis of 5-aminolevulinic acid (ALA) is a key regulatory step for the production of hemes and chlorophyll via the tetrapyrrole synthesis pathway. The first enzyme committed to ALA synthesis is glutamyl-tRNA reductase encoded in Arabidopsis by a small family of nuclear-encoded HEMA genes. To better understand the regulation of the tetrapyrrole synthesis pathway we have made a detailed study of HEMA2 expression with transgenic Arabidopsis thaliana L. Col. plants carrying chimeric HEMA2 promoter:gusA fusion constructs. Our results show that the HEMA2 promoter directs expression predominantly to roots and flowers, but that HEMA2 is also expressed at low levels in photosynthetic tissues. Deletion analysis of the HEMA2 promoter indicates that a ca. 850 bp fragment immediately upstream of the HEMA2 coding region is sufficient to drive regulated gusA expression. In contrast to HEMA1, HEMA2 is not up-regulated by red, far-red, blue, UV or white light. In addition, elimination of a promotive plastid signal by Norflurazon-induced photobleaching of plastids had no effect on HEMA2 expression while being required for normal white-light induction of HEMA1. HEMA2 expression in the cotyledons is inhibited by the presence of sucrose or glucose, but not fructose, and this response is light-independent. HEMA1 expression in cotyledons is also inhibited by sugars, but in a strictly light-dependent manner. The roles of HEMA1 and HEMA2 in meeting cellular tetrapyrrole requirements are discussed.  相似文献   
46.
47.
Tumour cells distinguish from normal cells by fermenting glucose to lactate in presence of sufficient oxygen and functional mitochondria (Warburg effect). Crabtree effect was invoked to explain the biochemical basis of Warburg effect by suggesting that excess glucose suppresses mitochondrial respiration. It is known that the Warburg effect and Crabtree effect are displayed by Saccharomyces cerevisiae, during growth on abundant glucose. Beyond this similarity, it was also demonstrated that expression of human pro-apoptotic proteins in S. cerevisiae such as Bax and p53 caused apoptosis. Here, we demonstrate that p53 expression in S. cerevisiae (Crabtree-positive yeast) causes increase in ROS levels and apoptosis when cells are growing on non-fermentable carbon sources but not on fermentable carbon sources, a feature similar to tumour cells. In contrast, in Kluyveromyces lactis (Crabtree-negative yeast) p53 causes increase in ROS levels and apoptosis regardless of the carbon source. Interestingly, the increased ROS levels and apoptosis are correlated to increased oxygen uptake in both S. cerevisiae and K. lactis. Based on these results, we suggest that at least in yeast, fermentation per se does not prevent the escape from apoptosis. Rather, the Crabtree effect plays a crucial role in determining whether the cells should undergo apoptosis or not.  相似文献   
48.
The six high-affinity insulin-like growth factor-binding proteins (IGFBPs) comprise a conserved family of secreted molecules that modulate IGF actions by regulating their half-life and access to signaling receptors, and also exert biological effects that are independent of IGF binding. IGFBPs are composed of cysteine-rich amino- (N-) and carboxyl- (C-) terminal domains, along with a cysteine-poor central linker segment. IGFBP-5 is the most conserved IGFBP, and contains 18 cysteines, but only 2 of 9 putative disulfide bonds have been mapped to date. Using a mass spectrometry (MS)-based strategy combining sequential electron transfer dissociation (ETD) and collision-induced dissociation (CID) steps, in which ETD fragmentation preferentially induces cleavage of disulfide bonds, and CID provides exact disulfide linkage assignments between liberated peptides, we now have definitively mapped 5 disulfide bonds in IGFBP-5. In addition, in conjunction with ab initio molecular modeling we are able to assign the other 4 disulfide linkages to within a GCGCCXXC motif that is conserved in five IGFBPs. Because of the nature of ETD fragmentation MS experiments were performed without chemical reduction of IGFBP-5. Our results not only establish a disulfide bond map of IGFBP-5 but also define a general approach that takes advantage of the specificity of ETD and the scalability of tandem MS, and the predictive power of ab initio molecular modeling to characterize unknown disulfide linkages in proteins.  相似文献   
49.
Crystallization of membrane proteins remains a significant challenge. For proteins resistant to the traditional approach of directly crystallizing from detergents, lipidic phase crystallization can be a powerful tool. Bicelles are an excellent medium for crystallizing membrane proteins in a lipidic environment. They can be described as bilayer discs formed by the mixture of a long-chain phospholipid and an amphiphile in an aqueous medium. Membrane proteins can be readily reconstituted into bicelles, where they are maintained in a native-like bilayer environment. Importantly, membrane proteins have been shown to be fully functional in bicelles under physiological conditions. Protein-bicelle mixtures can be manipulated with almost the same ease as detergent-solubilized membrane proteins, making bicelles compatible with standard equipment including high-throughput crystallization robots. A number of membrane proteins have now been successfully crystallized using the bicelle method, including bacteriorhodopsin, β2 adrenergic receptor, voltage-dependent anion channel, xanthorhodopsin and rhomboid protease. Because of the success with a variety of membrane proteins and the ease of implementation, bicelles should be a part of every membrane protein crystallographer's arsenal.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号