首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3387篇
  免费   192篇
  国内免费   1篇
  2021年   30篇
  2019年   25篇
  2018年   27篇
  2017年   25篇
  2016年   47篇
  2015年   77篇
  2014年   109篇
  2013年   206篇
  2012年   149篇
  2011年   174篇
  2010年   79篇
  2009年   87篇
  2008年   159篇
  2007年   166篇
  2006年   149篇
  2005年   135篇
  2004年   142篇
  2003年   152篇
  2002年   164篇
  2001年   125篇
  2000年   130篇
  1999年   122篇
  1998年   46篇
  1997年   38篇
  1996年   26篇
  1995年   29篇
  1994年   32篇
  1993年   31篇
  1992年   76篇
  1991年   76篇
  1990年   62篇
  1989年   74篇
  1988年   61篇
  1987年   39篇
  1986年   42篇
  1985年   49篇
  1984年   39篇
  1983年   47篇
  1982年   19篇
  1981年   19篇
  1980年   18篇
  1979年   36篇
  1978年   22篇
  1977年   16篇
  1976年   19篇
  1975年   19篇
  1973年   18篇
  1970年   14篇
  1966年   12篇
  1965年   13篇
排序方式: 共有3580条查询结果,搜索用时 78 毫秒
991.
Muscle-specific isoform of the mitochondrial ATP synthase gamma subunit (F(1)gamma) was generated by alternative splicing, and exon 9 of the gene was found to be lacking particularly in skeletal muscle and heart tissue. Recently, we reported that alternative splicing of exon 9 was induced by low serum or acidic media in mouse myoblasts, and that this splicing required de novo protein synthesis of a negative regulatory factor (Ichida, M., Endo, H., Ikeda, U., Matsuda, C., Ueno, E., Shimada, K., and Kagawa, Y. (1998) J. Biol. Chem. 273, 8492-8501; Hayakawa, M., Endo, H., Hamamoto, T., and Kagawa, Y. (1998) Biochem. Biophys. Res. Commun. 251, 603-608). In the present report, we identified a cis-acting element on the muscle-specific alternatively spliced exon of F(1)gamma gene by an in vivo splicing system using cultured cells and transgenic mice. We constructed a F(1)gamma wild-type minigene, containing the full-length gene from exon 8 to exon 10, and two mutants; one mutant involved a pyrimidine-rich substitution on exon 9, whereas the other was a purine-rich substitution, abbreviated as F(1)gamma Pu-del and F(1)gamma Pu-rich mutants, respectively. Based on an in vivo splicing assay using low serum- or acid-stimulated splicing induction system in mouse myoblasts, Pu-del mutation inhibited exon inclusion, indicating that a Pu-del mutation would disrupt an exonic splicing enhancer. On the other hand, the Pu-rich mutation blocked muscle-specific exon exclusion following both inductions. Next, we produced transgenic mice bearing both mutant minigenes and analyzed their splicing patterns in tissues. Based on an analysis of F(1)gamma Pu-del minigene transgenic mice, the purine nucleotide of this element was shown to be necessary for exon inclusion in non-muscle tissue. In contrast, analysis of F(1)gamma Pu-rich minigene mice revealed that the F(1)gamma Pu-rich mutant exon had been excluded from heart and skeletal muscle of these transgenic mice, despite the fact mutation of the exon inhibited muscle-specific exon exclusion in myotubes of early embryonic stage. These results suggested that the splicing regulatory mechanism underlying F(1)gamma pre-mRNA differed between myotubes and myofibers during myogenesis and cardiogenesis.  相似文献   
992.
Integrin alpha(v)beta(3) recognizes fibrinogen gamma and alpha(E) chain C-terminal domains (gammaC and alpha(E)C) but does not require the gammaC dodecapeptide sequence HHLGGAKQAGDV(400-411) for binding to gammaC. We have localized the alpha(v)beta(3) binding sites in gammaC using gammaC-derived synthetic peptides. We found that two peptides GWTVFQKRLDGSV(190-202) and GVYYQGGTYSKAS(346-358) block the alpha(v)beta(3) binding to gammaC or alpha(E)C, block the alpha(v)beta(3)-mediated clot retraction, and induce the ligand-induced binding site 2 (LIBS2) epitope in alpha(v)beta(3). Neither peptide affects fibrinogen binding to alpha(IIb)beta(3). Scrambled or inverted peptides were not effective. These results suggest that the two gammaC-derived peptides directly interact with alpha(v)beta(3) and specifically block alpha(v)beta(3)-gammaC or alpha(E)C interaction. The two sequences are located next to each other in the gammaC crystal structure, although they are separate in the primary structure. Asp-199, Ser-201, Gln-350, Thr-353, Lys-356, Ala-357, and Ser-358 residues are exposed to the surface. This suggests that the two sequences are part of alpha(v)beta(3) binding sites in fibrinogen gammaC domain. We also found that tenascin C C-terminal fibrinogen-like domain specifically binds to alpha(v)beta(3). Notably, a peptide WYRNCHRVNLMGRYGDNNHSQGVNWFHWKG from this domain that includes the sequence corresponding to gammaC GVYYQGGTYSKAS(346-358) specifically binds to alpha(v)beta(3), suggesting that fibrinogen and tenascin C C-terminal domains interact with alpha(v)beta(3) in a similar manner.  相似文献   
993.
994.
A membrane-bound sialidase in pig liver microsomes was solubilized with a nonionic detergent, IGEPAL CA630, and purified to homogeneity by sequential chromatographies on SP-Toyopearl, Butyl-Toyopearl (1st), SuperQ-Toyopearl, Hydroxyapatite, Butyl-Toyopearl (2nd), GM1-Cellulofine affinity, and sialic acid-Cellulofine affinity columns. The molecular weight of the purified enzyme was estimated to be 57 kDa on SDS-PAGE. The pH optimum was 4.8 for the activity measured using 4-methylumbelliferyl-alpha-N-acetylneuraminic acid (4MU-Neu5Ac) as the substrate. The enzyme activity was inhibited by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, iodoacetamide and p-chloromercuribenzoic acid. While the enzyme could effectively hydrolyze 4MU-Neu5Ac, it failed to significantly cleave a sialic acid residue(s) from sialyllactose, glycoproteins or gangliosides at pH 4.8. These results suggest that the purified enzyme is a novel sialidase with a substrate specificity distinct from those of known membrane-bound sialidases in mammalian tissues.  相似文献   
995.
A beta-selective rhamnosylation reaction was accomplished by using 2-O-benzyl-3-O-tert-butyldimethylsilyl-4-O-tertbutyldiphenylsilyl-alpha-L-rhamnopyranosyl trichloroacetimidate and a catalytic amount of 9-borabicylco[3.3.1]nonyl trifluoromethanesulfonate. The rhamnosyl donor has the 4C1 ring conformation to change the general high alpha-selectivity of the rhamnosylation reactions.  相似文献   
996.
Polymorphonuclear leukocytes (PMN) were perfused over extracellular matrix protein substrates under laminar shear flow. Under shear below 1.5 dyn/cm(2), many PMN tethered to immobilized laminin but not to fibronectin or vitronectin. Almost all the tethered PMN immediately arrested on laminin. The number of tethered PMN was mostly abrogated by mAbs to integrin alpha 6 or beta 1 chains at concentrations of more than 5 microg/ml. Addition of the two mAbs together produced no further inhibition compared with each mAb alone. In contrast, none of the mAbs to alpha 2, alpha 3, and beta 4 chains showed significant inhibition, indicating that PMN tethering to laminin is mostly dependent on alpha 6 beta 1 integrin. The addition of 10-100 ng/ml IL-8 in the assay medium before perfusion partially reduced PMN tethering to laminin. Stimulation with IL-8 also induced detachment of some tethered PMN within 30 s. Thus, IL-8 partially weakens the adhesiveness of alpha 6 beta 1 integrin on PMN in flow conditions.  相似文献   
997.
Although the cyclooxygenase-2 (COX-2) pathway of the arachidonic acid cascade has been suggested to play an important role in colon carcinogenesis, there is little information concerning the identity of phospholipase A(2) (PLA(2)) involved in the arachidonic acid release in colon tumors. Here, we compared the potencies of three types of secretory PLA(2)s (group IB, IIA and X sPLA(2)s) for the arachidonic acid release from cultured human colon adenocarcinoma cells, and found that group X sPLA(2) has the most powerful potency in the release of arachidonic acid leading to COX-2-dependent prostaglandin E(2) (PGE(2)) formation. Furthermore, immunohistological analysis revealed the elevated expression of group X sPLA(2) in human colon adenocarcinoma neoplastic cells in concert with augmented expression of COX-2. These findings suggest a critical role of group X sPLA(2) in the PGE(2) biosynthesis during colon tumorigenesis.  相似文献   
998.
Here we report the molecular identification of membrane-bound glutathione (GSH)-dependent prostaglandin (PG) E(2) synthase (mPGES), a terminal enzyme of the cyclooxygenase (COX)-2-mediated PGE(2) biosynthetic pathway. The activity of mPGES was increased markedly in macrophages and osteoblasts following proinflammatory stimuli. cDNA for mouse and rat mPGESs encoded functional proteins that showed high homology with the human ortholog (microsomal glutathione S-transferase-like 1). mPGES expression was markedly induced by proinflammatory stimuli in various tissues and cells and was down-regulated by dexamethasone, accompanied by changes in COX-2 expression and delayed PGE(2) generation. Arg(110), a residue well conserved in the microsomal GSH S-transferase family, was essential for catalytic function. mPGES was functionally coupled with COX-2 in marked preference to COX-1, particularly when the supply of arachidonic acid was limited. Increased supply of arachidonic acid by explosive activation of cytosolic phospholipase A(2) allowed mPGES to be coupled with COX-1. mPGES colocalized with both COX isozymes in the perinuclear envelope. Moreover, cells stably cotransfected with COX-2 and mPGES grew faster, were highly aggregated, and exhibited aberrant morphology. Thus, COX-2 and mPGES are essential components for delayed PGE(2) biosynthesis, which may be linked to inflammation, fever, osteogenesis, and even cancer.  相似文献   
999.
1000.
In addition to their stimulating function on osteoclastic bone resorption, bone resorptive factors may regulate proteinases and related factors in osteoblastic cells to degrade bone matrix proteins. This study investigated the regulation of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by bone resorptive factors in the cultures of mouse osteoblastic MC3T3-E1 cells, mouse primary osteoblastic (POB) cells, and neonatal mouse calvariae. Expression of either MMP-2, -3, -9, -11, -13, and -14 or TIMP-1, -2, and -3 was detected in MC3T3-E1 cells and POB cells. When the bone resorptive factors parathyroid hormone, 1,25-dihydroxyvitamin D(3), prostaglandin E(2), interleukin-1beta (IL-1beta), and tumor necrosis factor-alpha (TNF-alpha) were added to the cell cultures, MMP-13 mRNA levels were found predominantly to increase by all resorptive factors in the three cultures. mRNA levels of either MMP-3 and -9 or TIMP-1 and -3 were found to increase mainly by the cytokines IL-1beta and TNF-alpha. BB94, a nonselective MMP inhibitor, neutralized the (45)Ca release stimulated by these resorptive factors to an extent similar to that of calcitonin, strongly suggesting that bone resorptive factors function at least partly through MMP formation. We propose that MMP-13 mRNA expression in osteoblastic cells may play an important role in stimulating matrix degradation by both systemic and local resorptive factors, whereas either MMP-3 and -9 or TIMP-1 and -3 might modulate matrix degradation by local cytokines only.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号