首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   15篇
  151篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2015年   4篇
  2014年   6篇
  2013年   5篇
  2012年   8篇
  2011年   12篇
  2010年   11篇
  2009年   7篇
  2008年   11篇
  2007年   10篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   6篇
  1998年   9篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1979年   2篇
  1977年   1篇
  1975年   3篇
  1971年   1篇
  1954年   1篇
排序方式: 共有151条查询结果,搜索用时 0 毫秒
21.
22.
23.
The Rhodococcus erythropolis strain (N′4) possesses the ability to convert 4-chloro-3-hydroxybutyronitrile into the corresponding acid. This conversion was determined to be performed by its nitrile hydratase and amidase. Ammonium sulfate fractionation, DEAE ion exchange chromatography, and phenyl chromatography were used to partially purify nitrile hydratase from cell-free extract. A SDS-PAGE showed that the partially purified enzyme had two subunits and gel filtration chromatography showed that it consisted of four subunits of α2β2. The purified enzyme had a high specific activity of 860 U mg−1 toward methacrylonitrile. The enzyme was found to have high activity at low temperature range, with a maximum activity occurring at 25 °C and be stable in the presence of organic acids at higher temperatures. The enzyme exhibited a preference for aliphatic saturated nitrile substrates over aliphatic unsaturated or aromatic ones. It was inhibited by sulfhydryl, oxidizing, and serine protease inhibitors, thus indicating that essential cysteine and serine residues can be found in the active site.The purified nitrile hydratase was able to convert 4-chloro-3-hydroxybutyronitrile into the corresponding amide at 15 °C. GC analysis showed that the initial conversion rate of the reaction was 215 mg substrate consumed min−1 mg−1. This demonstrated that this enzyme could be used in conjunction with a stereoselective amidase to synthesize ethyl (S)-4-chloro-3-hydroxybutyrate, an intermediate for a hypercholesterolemia drug, Atorvastatin.  相似文献   
24.
Simultaneous quantification of multiple proteins by selected reaction monitoring (SRM) has several applications in cell signaling studies including embryo proteomics. However, concerns have recently been raised over the specificity of SRM assays due to possible ion redundancy and/or sequence similarity of selected peptide with multiple non‐related proteins. In this Viewpoint article, we discuss some simple measures that can increase our confidence in the accuracy of SRM scans used in proteomic experiments. At least in embryonic samples from porcine species, these measures were found to be useful in validating MS‐identified differentially expressed proteins. Among the nine proteins analyzed by SRM assay, all the proteins that were found to be up‐ or down‐regulated in MS experiment were also faithfully up‐ or down‐regulated in SRM assay.  相似文献   
25.
Summary : FT is a tool written in C++, which implements the Fourier analysis method to locate periodicities in aminoacid or DNA sequences. It is provided for free public use on a WWW server with a Java interface. Availability : The server address is http://o2.db. uoa.gr/FT Contact : shamodr@atlas.uoa.gr   相似文献   
26.
27.

Background  

Microarray-based pooled DNA experiments that combine the merits of DNA pooling and gene chip technology constitute a pivotal advance in biotechnology. This new technique uses pooled DNA, thereby reducing costs associated with the typing of DNA from numerous individuals. Moreover, use of an oligonucleotide gene chip reduces costs related to processing various DNA segments (e.g., primers, reagents). Thus, the technique provides an overall cost-effective solution for large-scale genomic/genetic research. However, few publicly shared tools are available to systematically analyze the rapidly accumulating volume of whole-genome pooled DNA data.  相似文献   
28.
29.
Insulin resistance is the primary cause responsible for type 2 diabetes. Phosphatase and tensin homolog (PTEN) plays a negative role in insulin signaling and its inhibition improves insulin sensitivity. Metformin is a widely used insulin-sensitizing drug; however, the mechanism by which metformin acts is poorly understood. To gain insight into the role of PTEN, we examined the effect of metformin on PTEN expression. Metformin suppressed the expression of PTEN in an AMP-activated protein kinase (AMPK)-dependent manner in preadipocyte 3T3-L1 cells. Knock-down of PTEN potentiated the increase in insulin-mediated phosphorylation of Akt/ERK. Metformin also increased the phosphorylation of c-Jun N-terminal kinase (JNK)-c-Jun and mammalian target of rapamycin (mTOR)-p70S6 kinase pathways. Both pharmacologic inhibition and knock-down of AMPK blocked metformin-induced phosphorylation of JNK and mTOR. Knock-down of AMPK recovered the metformin-induced PTEN down-regulation, suggesting the involvement of AMPK in PTEN regulation. PTEN promoter activity was suppressed by metformin and inhibition of mTOR and JNK by pharmacologic inhibitors blocked metformin-induced PTEN promoter activity suppression. These findings provide evidence for a novel role of AMPK on PTEN expression and thus suggest a possible mechanism by which metformin may contribute to its beneficial effects on insulin signaling.  相似文献   
30.
We have previously described a developmentally regulated mRNA in maize that accumulates in mature embryos and is involved in a variety of stress responses in the plant. The sequence of the encoded 16 kDa protein (MA16) predicts that it is an RNA-binding protein, since it possesses a ribonucleoprotein consensus sequence-type RNA-binding domain (CS-RBD). To assess the predicted RNA binding property of the protein and as a starting point to characterize its function we have used ribohomopolymer-binding assays. Here we show that the MA16-encoded protein binds preferentially to uridine- and guanosine-rich RNAs. In light of these results a likely role for this protein in RNA metabolism during late embryogenesis and in the stress response is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号