首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   20篇
  2023年   4篇
  2022年   4篇
  2021年   6篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   9篇
  2016年   12篇
  2015年   20篇
  2014年   23篇
  2013年   39篇
  2012年   34篇
  2011年   36篇
  2010年   21篇
  2009年   18篇
  2008年   33篇
  2007年   29篇
  2006年   15篇
  2005年   24篇
  2004年   20篇
  2003年   18篇
  2002年   25篇
  2001年   3篇
  2000年   7篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1996年   5篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1984年   5篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1968年   3篇
  1964年   1篇
  1910年   1篇
排序方式: 共有468条查询结果,搜索用时 31 毫秒
151.
Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined. Several lines of evidence suggest that defects in ribosome synthesis lead to “ribosomal stress” with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis.  相似文献   
152.

Aims/hypotheses

To examine hepatic expression of cholesterol-trafficking proteins, mitochondrial StarD1 and endosomal StarD3, and their relationship with dyslipidaemia and steatosis in Zucker (fa/fa) genetically obese rats, and to explore their functional role in lipid metabolism in rat McArdle RH-7777 hepatoma cells.

Methods

Expression of StarD1 and StarD3 in rat liver and hepatoma samples were determined by Q-PCR and/or immunoblotting; lipid mass by colorimetric assays; radiolabelled precursors were utilised to measure lipid synthesis and secretion, and lipidation of exogenous apolipoprotein A-I.

Results

Hepatic expression of StarD3 protein was repressed by genetic obesity in (fa/fa) Zucker rats, compared with lean (Fa/?) controls, suggesting a link with storage or export of lipids from the liver. Overexpression of StarD1 and StarD3, and knockdown of StarD3, in rat hepatoma cells, revealed differential effects on lipid metabolism. Overexpression of StarD1 increased utilisation of exogenous (preformed) fatty acids for triacylglycerol synthesis and secretion, but impacted minimally on cholesterol homeostasis. By contrast, overexpression of StarD3 increased lipidation of exogenous apoA-I, and facilitated de novo biosynthetic pathways for neutral lipids, potentiating triacylglycerol accumulation but possibly offering protection against lipotoxicity. Finally, StarD3 overexpression altered expression of genes which impact variously on hepatic insulin resistance, inducing Ppargcla, Cyp2e1, Nr1h4, G6pc and Irs1, and repressing expression of Scl2a1, Igfbp1, Casp3 and Serpine 1.

Conclusions/interpretation

Targeting StarD3 may increase circulating levels of HDL and protect the liver against lipotoxicity; loss of hepatic expression of this protein, induced by genetic obesity, may contribute to the pathogenesis of dyslipidaemia and steatosis.  相似文献   
153.
Mitotic division requires highly regulated morphological and biochemical changes to the cell. Upon commitment to exit mitosis, cells begin to remove mitotic regulators in a temporally and spatially controlled manner to bring about the changes that reestablish interphase. Ubiquitin-dependent pathways target these regulators to generate polyubiquitin-tagged substrates for degradation by the 26S proteasome. However, the lack of cell-based assays to investigate in vivo ubiquitination limits our knowledge of the identity of substrates of ubiquitin-mediated regulation in mitosis. Here we report an in vivo ubiquitin tagging system used in human cells that allows efficient purification of ubiquitin conjugates from synchronized cell populations. Coupling purification with mass spectrometry, we have identified a series of mitotic regulators targeted for polyubiquitination in mitotic exit. We show that some are new substrates of the anaphase-promoting complex/cyclosome and validate KIFC1 and RacGAP1/Cyk4 as two such targets involved respectively in timely mitotic spindle disassembly and cell spreading. We conclude that in vivo biotin tagging of ubiquitin can provide valuable information about the role of ubiquitin-mediated regulation in processes required for rebuilding interphase cells.Ubiquitination has emerged as a major post-translational modification determining the fate of cellular proteins. One of these fates is proteolysis, whereby the assembly of polyubiquitin chains creates signatures on target proteins that specify delivery to the 26S proteasome for proteolytic destruction. Targeted proteolysis is critical to the control of cell division. For example, the universally conserved mechanism of mitotic exit depends upon rapid proteolysis of mitotic cyclins and securins to drive the transition from mitosis to interphase. This transition is under surveillance by the spindle assembly checkpoint (SAC),1 which controls the activity of a multi-subunit ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) (1, 2).Much of the known specificity in the ubiquitin-proteasome system (UPS) is mediated at the level of substrate targeting by ubiquitin ligase (E3) enzymes, of which there are more than 600 in human cells. Given these facts, it is perhaps surprising that the APC/C is almost the only known engineer of the protein landscape after anaphase onset, targeting mitotic regulators for destruction with high temporal specificity (24). Some roles for nondegradative ubiquitination in regulating the localization of mitotic kinases Aurora B and Plk1 have been described (59), and a growing list of reported ubiquitin interactors can modulate ubiquitin-dependent events during mitosis (10). However, the majority of ubiquitination events that have so far been described as occurring at the transition from mitosis to interphase are APC/C-dependent.Two co-activator subunits, Cdc20 and Cdh1, play vital roles in APC/C-dependent substrate recognition (11) by recognizing two widely characterized degrons, the D-box and the KEN motif (12, 13). Computational approaches that have been used to calculate the total number of APC/C substrates from the prevalence of degrons in the human proteome estimate that there are between 100 and 200 substrates (14), and experiments using in vitro ubiquitination of protein arrays have given rise to estimates in the same range (15). Most of the mitotic regulators targeted by the APC/C during mitotic exit in human cells have been identified via in vitro degradation assays or ubiquitination assays on in vitro–expressed pools of substrates (1518). These approaches have identified several important substrates, but in the absence of in vivo parameters they may not identify substrates whose targeting depends on post-translational modifications or substrates that are only recognized in vivo as components of higher-order complexes. Not all substrates identified in this way have been validated as polyubiquitinated proteins in vivo. Multiple recent proteomic studies have identified large numbers of in vivo ubiquitin-modified sites from yeast (1921) and human cells (2229). None of these studies have used synchronized cell populations to provide information on the timing or regulation of substrate ubiquitination.We reasoned that a better view of ubiquitin-mediated processes that regulate mitotic exit would come from identifying proteins that are ubiquitinated in vivo during mitotic exit. With this goal in mind we adopted a system for in vivo tagging of ubiquitin chains with biotin, previously used to identify ubiquitin-conjugated proteins from the Drosophila neural system (30), and applied it to a human cell line (U2OS) that can be tightly synchronized at mitosis. In contrast to several recent studies that employed antibodies specific to the diGly-Lys remnant that marks ubiquitination sites following trypsin digestion (19, 25), an in vivo ubiquitin tagging strategy allows direct validation of candidate ubiquitinated proteins (whether mono- or polyubiquitinated) through immunoblotting of samples. Moreover, in contrast to other methods for affinity tagging of ubiquitin, or affinity purification via ubiquitin-binding domains, the use of the biotin tag enables purification under highly denaturing conditions for stringent isolation of ubiquitin-conjugated material from higher eukaryotes. His6-tagged ubiquitin is also available for use under denaturing conditions, but it is not generally useful in higher eukaryotic cells, where a high frequency of proteins containing multiple histidine residues confounds the specificity of nickel-affinity pulldowns (as discussed in detail in Ref. 30). Therefore, in this paper we describe the reproducible identification and validation of mitoticphase-specific polyubiquitinated proteins via the in vivo biotinylation of ubiquitin. A large number of polyubiquitinated proteins that we identified are specific to mitotic exit, when the APC/C is active, and we expect that many of them are substrates for the APC/C. We formally identified KIFC1/HSET and Cyk4/RACGAP1 as targets of APC/C-dependent ubiquitin-mediated proteolysis after anaphase onset and investigated the role of their ubiquitination in the regulation of mitotic exit. Cell cycle phase-specific information on protein ubiquitination and the generation of ubiquitinated protein networks provides a framework for further investigation of ubiquitin-controlled processes occurring during the rebuilding of interphase cells.  相似文献   
154.
The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates.  相似文献   
155.
A multicentre study evaluating the presence of glycosil phosphatidyl-inositol (GPI)-negative populations was performed in 85 children with acquired aplastic anemia (AA). A GPI-negative population was observed in 41% of patients at diagnosis, 48% during immune-suppressive therapy (IST), and 45% in patients off-therapy. No association was found between the presence of a GPI-negative population at diagnosis and the response to IST. In addition, the response rate to IST did not differ between the patients who were GPI-positive at diagnosis and later developed GPI-negative populations and the 11 patients who remained GPI-positive. Two patients with a GPI-negative population >10%, and laboratory signs of hemolysis without hemoglobinuria were considered affected by paroxysmal nocturnal hemoglobinuria (PNH) secondary to AA; no thrombotic event was reported. Excluding the 2 patients with a GPI-negative population greater than 10%, we did not observe a significant correlation between LDH levels and GPI-negative population size. In this study monitoring for laboratory signs of hemolysis was sufficient to diagnose PNH in AA patients. The presence of minor GPI-negative populations at diagnosis in our series did not influence the therapeutic response. As occasionally the appearance of a GPI-negative population was observed at cyclosporine (CSA) tapering or AA relapse, a possible role of GPI-negative population monitoring during IST modulation may need further investigation.  相似文献   
156.
There is an urgent need for potent inhibitors of dengue virus (DENV) replication for the treatment and/or prophylaxis of infections with this virus. We here report on an aglycon analogue of the antibiotic teicoplanin (code name LCTA-949) that inhibits DENV-induced cytopathic effect (CPE) in a dose-dependent manner. Virus infection was completely inhibited at concentrations that had no adverse effect on the host cells. These findings were corroborated by quantification of viral RNA levels in culture supernatant. Antiviral activity was also observed against other flaviviruses such as the yellow fever virus and the tick-borne encephalitis virus (TBEV). In particular, potent antiviral activity was observed against TBEV. Time-of-drug-addition experiments indicated that LCTA-949 inhibits an early stage in the DENV replication cycle; however, a virucidal effect was excluded. This observation was corroborated by the fact that LCTA-949 lacks activity on DENV subgenomic replicon (that does not encode structural proteins) replication. Using a microsopy-based binding and fusion assay employing DiD-labeled viruses, it was shown that LCTA-949 targets the early stage (binding/entry) of the infection. Moreover, LCTA-949 efficiently inhibits infectivity of DENV particles pre-opsonized with antibodies, thus potentially also inhibiting antibody-dependent enhancement (ADE). In conclusion, LCTA-949 exerts in vitro activity against several flaviviruses and does so (as shown for DENV) by interfering with an early step in the viral replication cycle.  相似文献   
157.
158.
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号