首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   856篇
  免费   96篇
  952篇
  2023年   4篇
  2022年   9篇
  2021年   12篇
  2020年   8篇
  2019年   12篇
  2018年   19篇
  2017年   18篇
  2016年   24篇
  2015年   36篇
  2014年   45篇
  2013年   58篇
  2012年   59篇
  2011年   64篇
  2010年   44篇
  2009年   28篇
  2008年   59篇
  2007年   45篇
  2006年   34篇
  2005年   42篇
  2004年   50篇
  2003年   34篇
  2002年   33篇
  2001年   21篇
  2000年   23篇
  1999年   21篇
  1998年   10篇
  1997年   6篇
  1996年   7篇
  1994年   7篇
  1993年   7篇
  1992年   9篇
  1991年   7篇
  1990年   15篇
  1989年   9篇
  1988年   6篇
  1987年   7篇
  1986年   10篇
  1984年   6篇
  1983年   4篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   4篇
  1971年   3篇
  1967年   3篇
  1964年   2篇
排序方式: 共有952条查询结果,搜索用时 3 毫秒
111.
Interleukin-6 (IL-6) is a growth and survival factor in Epstein-Barr virus (EBV)-infected B lymphoma cells and IL-6 antagonists have been used in clinical practice for this pathology. We thus wanted to investigate the effect of the IL-6 receptor antagonist Sant7 on proliferative and anti-apoptotic signals in the IL-6-secreting LCL41 B lymphoid cells, taken from a patient with EBV-induced lymphoproliferative disorder. Results show efficient inhibition of constitutive Stat3 activation by Sant7. However, this inhibition is associated with marginal induction of apoptosis and with minor decrease of cell proliferation, contrary to the effect of the Jak kinase inhibitor AG490, which down-regulates both proliferation and Stat3 activation. Anti-apoptotic markers such as Bcl-xL or Mcl-1 are constitutively expressed in these cells, and their expression is not affected by Sant7 treatment. Inhibition of Stat3 activation is therefore not sufficient to prevent proliferation and to induce apoptosis in these cells. In addition, low cell density is a condition favouring inhibition of cell clustering and anti-proliferative Sant7 activity. A marked inhibition of cell cluster formation and proliferation is achieved by antibody treatment against the CD23 mature B cell surface marker expressed in LCL41 cells. These findings may thus contribute to the identification of possible resistance mechanisms to growth arrest in B cell lymphoproliferative conditions.  相似文献   
112.
113.
The antiepileptic drug zonisamide was considered to act as a weak inhibitor of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) (with a K(I) of 4.3 microM against the cytosolic isozyme II). Here we prove that this is not true. Indeed, testing zonisamide in the classical assay conditions of the CO2 hydrase activity of hCA II, with incubation times of enzyme and inhibitor solution of 15 min, a K(I) of 10.3 microM has been obtained. However, when the incubation between enzyme and inhibitor was prolonged to 1 h, the obtained K(I) was of 35.2 nM, of the same order of magnitude as that of the clinically used sulfonamides/sulfamates acetazolamide, methazolamide, ethoxzolamide and topiramate (K(I)s in the range of 5.4-15.4 nM). The inhibition of the human mitochondrial isozyme hCA V with these compounds has been also tested by means of a dansylamide competition binding assay, which showed zonisamide and topiramate to be effective inhibitors, with K(I)s in the range of 20.6-25.4 nM. The X-ray crystal structure of the adduct of hCA II with zonisamide has also been solved at a resolution of 1.70 A, showing that the sulfonamide moiety participates in the classical interactions with the Zn(II) ion and the residues Thr199 and Glu106, whereas the benzisoxazole ring is oriented toward the hydrophobic half of the active site, establishing a large number of strong van der Waals interactions (<4.5 A) with residues Gln92, Val121, Phe131, Leu198, Thr200, Pro202.  相似文献   
114.
Neural Wiskott-Aldrich syndrome protein (N-WASP) and WAVE are members of a family of proteins that use the Arp2/3 complex to stimulate actin assembly in actin-based motile processes. By entering into distinct macromolecular complexes, they act as convergent nodes of different signalling pathways. The role of WAVE in generating lamellipodial protrusion during cell migration is well established. Conversely, the precise cellular functions of N-WASP have remained elusive. Here, we report that Abi1, an essential component of the WAVE protein complex, also has a critical role in regulating N-WASP-dependent function. Consistently, Abi1 binds to N-WASP with nanomolar affinity and, cooperating with Cdc42, potently induces N-WASP activity in vitro. Molecular genetic approaches demonstrate that Abi1 and WAVE, but not N-WASP, are essential for Rac-dependent membrane protrusion and macropinocytosis. Conversely, Abi1 and N-WASP, but not WAVE, regulate actin-based vesicular transport, epidermal growth factor receptor (EGFR) endocytosis, and EGFR and transferrin receptor (TfR) cell-surface distribution. Thus, Abi1 is a dual regulator of WAVE and N-WASP activities in specific processes that are dependent on actin dynamics.  相似文献   
115.
Metabolic serotypes sensitive to caloric intake may enable sera metabolomic profiles to validate epidemiological parameters and predict disease risk in humans. This long-range goal is complicated by the lack of known state markers and the requirement for simultaneous monitoring of multiple small changes. Therefore, analytical precision for appropriate high data density studies using HPLC separations coupled with coulometric array detectors was evaluated over a two month period in pooled rat sera samples (previously collected and stored at –80 °C), and in authentic biochemical standards. In sera, mean coefficients of variation (CV) of retention time and ratio accuracy within the established metabolic serotype varied within ±1% and ±3%, respectively. In sets of purified standards, the same parameters fluctuated, correspondently, in ranges of ±0.1% and ±1%. Median CV of the metabolite concentrations were ~13% in standards and ~11–19% in sera, and varied non-monotonically with the analytical system status and experimental design. These parameters were shown to be sufficiently controlled so as not to dominate intra-group biological variability in serum metabolomics studies. Continuation of experimental runs across an analytical breakpoint (column replacement) was associated with disproportionate changes in metabolite concentrations, independent of maintained analytical precision. These changes were sufficient to shift overall profile localization in megavariate projection analyses. We developed a mathematical approach to normalize this break and use partial least squares projection to latent structure discriminant analysis to confirm validity of this normalization approach. This generally applicable mathematical correction helps enable longer term high data density studies by removing a critical source of systemic variation.  相似文献   
116.
Onconase (ONC), a member of the RNase A superfamily extracted from oocytes of Rana pipiens, is an effective cancer killer. It is currently used in treatment of various forms of cancer. ONC antitumor properties depend on its ribonucleolytic activity that is low in comparison with other members of the superfamily. The most damaging side effect from Onconase treatment is renal toxicity, which seems to be caused by the unusual stability of the enzyme. Therefore, mutants with reduced thermal stability and/or increased catalytic activity may have significant implications for human cancer chemotherapy. In this context, we have determined the crystal structures of two Onconase mutants (M23L-ONC and C87S,des103-104-ONC) and performed molecular dynamic simulations of ONC and C87S,des103-104-ONC with the aim of explaining on structural grounds the modifications of the activity and thermal stability of the mutants. The results also provide the molecular bases to explain the lower catalytic activity of Onconase compared with RNase A and the unusually high thermal stability of the amphibian enzyme.  相似文献   
117.
118.
Nitric oxide (NO) signaling is involved in numerous physiological processes in mollusks, e.g., learning and memory, feeding behavior, neural development, and defence response. We report the first molecular cloning of NOS mRNA from a cephalopod, the cuttlefish Sepia officinalis (SoNOS). SoNOS was cloned using a strategy that involves hybridization of degenerate PCR primers to highly conserved NOS regions, combined with RACE procedure. Two splicing variants of SoNOS, differing by 18 nucleotides, were found in the nervous system and the ink gland of Sepia. In situ hybridization shows that SoNOS is expressed in the immature and mature cells of the ink gland and in the regions of the nervous system that are related to the ink defence system.  相似文献   
119.
The biological antagonism between Notch and Numb controls the proliferative/differentiative balance in development and homeostasis. Although altered Notch signaling has been linked to human diseases, including cancer, evidence for a substantial involvement of Notch in human tumors has remained elusive. Here, we show that Numb-mediated control on Notch signaling is lost in approximately 50% of human mammary carcinomas, due to specific Numb ubiquitination and proteasomal degradation. Mechanistically, Numb operates as an oncosuppressor, as its ectopic expression in Numb-negative, but not in Numb-positive, tumor cells inhibits proliferation. Increased Notch signaling is observed in Numb-negative tumors, but reverts to basal levels after enforced expression of Numb. Conversely, Numb silencing increases Notch signaling in normal breast cells and in Numb-positive breast tumors. Finally, growth suppression of Numb-negative, but not Numb-positive, breast tumors can be achieved by pharmacological inhibition of Notch. Thus, the Numb/Notch biological antagonism is relevant to the homeostasis of the normal mammary parenchyma and its subversion contributes to human mammary carcinogenesis.  相似文献   
120.
Chromatophore organs are complex and unique structures responsible for the variety of body coloration patterns used by cephalopods to communicate and camouflage. They are formed by a pigment-containing cytoelastic sacculus, surrounded by muscle fibers directly innervated from the brain. Muscle contraction and relaxation are responsible for expansion and retraction of the pigment-containing cell. Their functioning depends on glutamate and Phe-Met-Arg-Phe-NH2-related peptides, which induce fast and slow cell expansion, respectively, and 5-hydroxytryptamine, which induces retraction. Apart from these three substances and acetylcholine, which acts presynaptically, no other neuroactive compounds have so far been found to be involved in the neuroregulation of chromatophore physiology, and the detailed signaling mechanisms are still little understood. Herein, we disclose the role of nitric oxide (NO) as mediator in one of the signaling pathways by which glutamate activates body patterning. NO and nitric-oxide synthase have been detected in pigment and muscle fibers of embryo, juvenile, and adult chromatophore organs from Sepia officinalis. NO-mediated Sepia chromatophore expansion operates at slower rate than glutamate and involves cGMP, cyclic ADP-ribose, and ryanodine receptor activation. These results demonstrate for the first time that NO is an important messenger in the long term maintenance of the body coloration patterns in Sepia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号