首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   659篇
  免费   36篇
  2023年   3篇
  2022年   8篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   12篇
  2017年   11篇
  2016年   17篇
  2015年   23篇
  2014年   30篇
  2013年   34篇
  2012年   37篇
  2011年   34篇
  2010年   27篇
  2009年   17篇
  2008年   38篇
  2007年   38篇
  2006年   48篇
  2005年   39篇
  2004年   51篇
  2003年   39篇
  2002年   35篇
  2001年   13篇
  2000年   18篇
  1999年   15篇
  1998年   8篇
  1997年   9篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   3篇
  1991年   10篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有695条查询结果,搜索用时 15 毫秒
111.
Diacylglycerol kinases (DGKs) convert diacylglycerol (DG) to phosphatidic acid, and both lipids are known to play important roles in lipid signal transduction. Thereby, DGKs are considered to be a one of the key players in lipid signaling, but its physiological function remains to be solved. In an effort to investigate one of nine subtypes, we found that DGKgamma came to be localized in the nucleus with time in all cell lines tested while seen only in the cytoplasm at the early stage of culture, indicating that DGKgamma is transported from the cytoplasm to the nucleus. The nuclear transportation of DGKgamma didn't necessarily need DGK activity, but its C1 domain was indispensable, suggesting that the C1 domain of DGKgamma acts as a nuclear transport signal. Furthermore, to address the function of DGKgamma in the nucleus, we produced stable cell lines of wild-type DGKgamma and mutants, including kinase negative, and investigated their cell size, growth rate, and cell cycle. The cells expressing the kinase-negative mutant of DGKgamma were larger in size and showed slower growth rate, and the S phase of the cells was extended. These findings implicate that nuclear DGKgamma regulates cell cycle.  相似文献   
112.
Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system by opening ion channels upon the binding of glutamate. Despite the essential roles of glutamate in the control of reproduction and anterior pituitary hormone secretion, there is a limited understanding of how glutamate receptors control ovulation. Here we reveal the function of the ionotropic glutamate receptor AMPA-1 (GRIA1) in ovulation. Based on a genome-wide association study in Bos taurus, we found that ovulation rate is influenced by a variation in the N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain of GRIA1, in which serine is replaced by asparagine. GRIA1(Asn) has a weaker affinity to glutamate than GRIA1(Ser), both in Xenopus oocytes and in the membrane fraction of bovine brain. This single amino acid substitution leads to the decreased release of gonadotropin-releasing hormone (GnRH) in immortalized hypothalamic GT1-7 cells. Cows with GRIA1(Asn) have a slower luteinizing hormone (LH) surge than cows with GRIA1(Ser). In addition, cows with GRIA1(Asn) possess fewer immature ovarian follicles before superovulation and have a lower response to hormone treatment than cows with GRIA1(Ser). Our work identified that GRIA1 is a critical mediator of ovulation and that GRIA1 might be a useful target for reproductive therapy.  相似文献   
113.
Matrix metalloproteinase (MMP) plays an important role in homeostatic regulation of the extracellular environment and degradation of matrix. During liver fibrosis, several MMPs, including MMP-2, are up-regulated in activated hepatic stellate cells, which are responsible for exacerbation of liver cirrhosis. However, it remains unclear how loss of MMP-2 influences molecular dynamics associated with fibrogenesis in the liver. To explore the role of MMP-2 in hepatic fibrogenesis, we employed two fibrosis models in mice; toxin (carbon tetrachloride, CCl4)-induced and cholestasis-induced fibrosis. In the chronic CCl4 administration model, MMP-2 deficient mice exhibited extensive liver fibrosis as compared with wild-type mice. Several molecules related to activation of hepatic stellate cells were up-regulated in MMP-2 deficient liver, suggesting that myofibroblastic change of hepatic stellate cells was promoted in MMP-2 deficient liver. In the cholestasis model, fibrosis in MMP-2 deficient liver was also accelerated as compared with wild type liver. Production of tissue inhibitor of metalloproteinase 1 increased in MMP-2 deficient liver in both models, while transforming growth factor β, platelet-derived growth factor receptor and MMP-14 were up-regulated only in the CCl4 model. Our study demonstrated, using 2 experimental murine models, that loss of MMP-2 exacerbates liver fibrosis, and suggested that MMP-2 suppresses tissue inhibitor of metalloproteinase 1 up-regulation during liver fibrosis.  相似文献   
114.
Endothelial nitric oxide synthase (eNOS) is the primary enzyme that produces nitric oxide (NO), which plays an important role in blood vessel relaxation. eNOS activation is stimulated by various mechanical forces, such as shear stress. Several studies have shown that local cooling of the human finger causes strong vasoconstriction, followed after several minutes by cold-induced vasodilation (CIVD). However, the role played by endothelial cells (ECs) in blood vessel regulation in respond to cold temperatures is not fully understood. In this study, we found that low temperature alone does not significantly increase or decrease eNOS activation in ECs. We further found that the combination of shear stress with temperature change leads to a significant increase in eNOS activation at 37 °C and 28 °C, and a decrease at 4 °C. These results show that ECs play an important role in blood vessel regulation under shear stress and low temperature.  相似文献   
115.
In conditioned taste aversion (CTA) training performed on the pond snail Lymnaea stagnalis, a stimulus (the conditional stimulus, CS; e.g., sucrose) that elicits a feeding response is paired with an aversive stimulus (the unconditional stimulus, US) that elicits the whole-body withdrawal response and inhibits feeding. After CTA training and memory formation, the CS no longer elicits feeding. We hypothesize that one reason for this result is that after CTA training the CS now elicits a fear response. Consistent with this hypothesis, we predict the CS will cause (1) the heart to skip a beat and (2) a significant change in the heart rate. Such changes are seen in mammalian preparations exposed to fearful stimuli. We found that in snails exhibiting long-term memory for one-trial CTA (i.e., good learners) the CS significantly increased the probability of a skipped heartbeat, but did not significantly change the heart rate. The probability of a skipped heartbeat was unaltered in control snails given backward conditioning (US followed by CS) or in snails that did not acquire associative learning (i.e., poor learners) after the one-trial CTA training. These results suggest that as a consequence of acquiring CTA, the CS evokes conditioned fear in the conditioned snails, as evidenced by a change in the nervous system control of cardiac activity.  相似文献   
116.
117.
An escape mutant of human parainfluenza virus type 1 (hPIV1), which was selected by serial passage in the presence of a sialidase inhibitor, 4-O-thiocarbamoylmethyl-2-deoxy-2,3-didehydro-N-acetylneur-aminic acid (TCM-Neu5Ac2en), exhibited remarkable syncytium formation and virus-induced cell death in LLC-MK2 cells but no difference in susceptibility for the sialidase inhibitor TCM-Neu5Ac2en from that of wild-type hPIV1 strain C35 (WT). The mutant virus also had higher replication and plaque formation abilities. The mutant virus acquired two amino acid mutations, Glu to Gly at position 170 and Ala to Glu 442 in fusion (F) glycoprotein, but no mutations in haemaggulutinin-neuraminidase (HN) glycoprotein. Using cells co-expressing F and HN genes with site-specific mutagenesis, we demonstrated that a point mutation of Glu to Gly at position 170, which was estimated to be located in hPIV1 F glycoprotein heptad repeat 1, was required for obvious syncytium formation and caspase-3-dependent cell death. In contrast, wild-type F glycoprotein induced no synctium formation or cell death. The findings suggest that a single amino acid mutation of hPIV1 F glycoprotein promotes syncytium formation that is followed by caspase-3-dependent cell death.  相似文献   
118.
Lysyl oxidase, an extracellular amine oxidase, controls the maturation of collagen and elastin. We examined the regulation of lysyl oxidase mRNA in cultured rabbit retinal pigment epithelium (RPE) cells in relation to the changes in subretinal fluid transport and phenotype of RPE cells. The level of the mRNA in cells grown on microporous membranes was markedly increased by application of hyperosmotic mannitol solution on the apical side (191% of control), implying that RPE cells express more lysyl oxidase in the condition which may cause the accumulation of subretinal fluid. Platelet-derived growth factor increased the mRNA level in subconfluent cells in culture (137% of control) and basic fibroblast growth factor decreased it (79% of control). In addition, exposure of cells to retinoic acid alone or in combination with dibutyryl cAMP for 22 days markedly decreased the level of lysyl oxidase mRNA (52 or 35% of control) while increasing the level of mRNA of N-acetylglucosaminidase (NAG), a marker enzyme for lysosomes (162 or 142% of control). Moreover, the level of lysyl oxidase mRNA in cells grown on microporous membranes was lower than that in cells grown on plastic dishes, while the level of NAG mRNA in the former cells was higher than that in the latter. Taken together, the expression of lysyl oxidase seemed to increase during proliferation of RPE cells and decrease toward differentiation. beta-Aminopropionitrile, an inhibitor of lysyl oxidase, significantly inhibited the contraction of collagen gels by fetal calf serum, suggesting that lysyl oxidase may be involved in pathogenesis caused by RPE cells.  相似文献   
119.

Purpose

To evaluate localization and transgene expression from adenoviral vector of serotypes 5, 35, and 28, ± an RGD motif in the fiber following intravitreal or subretinal administration.

Methods

Ocular transduction by adenoviral vector serotypes ± RGD was studied in the eyes of mice receiving an intravitreous or subretinal injection. Each serotype expressed a CMV-GFP expression cassette and histological sections of eyes were examined. Transgene expression levels were examined using luciferase (Luc) regulated by the CMV promoter.

Results

GFP localization studies revealed that serotypes 5 and 28 given intravitreously transduced corneal endothelial, trabecular, and iris cells. Intravitreous delivery of the unmodified Ad35 serotype transduced only trabecular meshwork cells, but, the modification of the RGD motif into the fiber of the Ad35 viral vector base expanded transduction to corneal endothelial and iris cells. Incorporation of the RGD motif into the fiber knob with deletion of RGD from the penton base did not affect the transduction ability of the Ad5 vector base. Subretinal studies showed that RGD in the Ad5 knob shifted transduction from RPE cells to photoreceptor cells. Using a CMV-Luc expression cassette, intravitreous delivery of all the tested vectors, such as Ad5-, Ad35- and Ad28- resulted in an initial rapid induction of luciferase activity that thereafter declined. Subretinal administration of vectors showed a marked difference in transgene activity. Ad35-Luc gene expression peaked at 7 days and remained elevated for 6 months. Ad28-Luc expression was high after 1 day and remained sustained for one month.

Conclusions

Different adenoviral vector serotypes ± modifications transduce different cells within the eye. Transgene expression can be brief or extended and is serotype and delivery route dependent. Thus, adenoviral vectors provide a versatile platform for the delivery of therapeutic agents for ocular diseases.  相似文献   
120.
Parkinson's disease (PD) is a common neurodegenerative disease, but its pathogenesis remains elusive. A mutation in ubiquitin C‐terminal hydrolase L1 (UCH‐L1) is responsible for a form of genetic PD which strongly resembles the idiopathic PD. We previously showed that 1‐(3′,4′‐dihydroxybenzyl)‐1,2,3,4‐tetrahydroisoquinoline (3′,4′DHBnTIQ) is an endogenous parkinsonism‐inducing dopamine derivative. Here, we investigated the interaction between 3′,4′DHBnTIQ and UCH‐L1 and its possible role in the pathogenesis of idiopathic PD. Our results indicate that 3′,4′DHBnTIQ binds to UCH‐L1 specifically at Cys152 in vitro. In addition, 3′,4′DHBnTIQ treatment increased the amount of UCH‐L1 in the insoluble fraction of SH‐SY5Y cells and inhibited its hydrolase activity to 60%, reducing the level of ubiquitin in the soluble fraction of SH‐SY5Y cells. Catechol‐modified UCH‐L1 as well as insoluble UCH‐L1 were detected in the midbrain of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐treated PD model mice. Structurally as well as functionally altered UCH‐L1 have been detected in the brains of patients with idiopathic PD. We suggest that conjugation of UCH‐L1 by neurotoxic endogenous compounds such as 3′,4′DHBnTIQ might play a key role in onset and progression of idiopathic PD.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号