首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   659篇
  免费   36篇
  695篇
  2023年   3篇
  2022年   8篇
  2021年   3篇
  2020年   5篇
  2019年   5篇
  2018年   12篇
  2017年   11篇
  2016年   17篇
  2015年   23篇
  2014年   30篇
  2013年   34篇
  2012年   37篇
  2011年   34篇
  2010年   27篇
  2009年   17篇
  2008年   38篇
  2007年   38篇
  2006年   48篇
  2005年   39篇
  2004年   51篇
  2003年   39篇
  2002年   35篇
  2001年   13篇
  2000年   18篇
  1999年   15篇
  1998年   8篇
  1997年   9篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   3篇
  1991年   10篇
  1990年   5篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1981年   5篇
  1980年   1篇
  1979年   4篇
  1978年   1篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有695条查询结果,搜索用时 11 毫秒
101.
NS2B-NS3 protease is an essential enzyme for the replication of dengue virus (DENV), which continues to be a serious threat to worldwide public health. We designed and synthesized a series of cyclic peptides mimicking the substrates of this enzyme, and assayed their activity against the DENV-2 NS2B-NS3 protease. The introduction of aromatic residues at the appropriate positions and conformational restriction generated the most promising cyclic peptide with an IC50 of 0.95 μM against NS2B-NS3 protease. Cyclic peptides with proper positioning of additional arginines and aromatic residues exhibited antiviral activity against DENV. Furthermore, replacing the C-terminal amide bond of the polybasic amino acid sequence with an amino methylene moiety stabilized the cyclic peptides against hydrolysis by NS2B-NS3 protease, while maintaining their enzyme inhibitory activity and antiviral activity.  相似文献   
102.
Primary motor cortex (M1) neurons are tuned in response to several parameters related to motor control, and it was recently reported that M1 is important in feedback control. However, it remains unclear how M1 neurons encode information to control the musculoskeletal system. In this study, we examined the underlying computational mechanisms of M1 based on optimal feedback control (OFC) theory, which is a plausible hypothesis for neuromotor control. We modelled an isometric torque production task that required joint torque to be regulated and maintained at desired levels in a musculoskeletal system physically constrained by muscles, which act by pulling rather than pushing. Then, a feedback controller was computed using an optimisation approach under the constraint. In the presence of neuromotor noise, known as signal-dependent noise, the sensory feedback gain is tuned to an extrinsic motor output, such as the hand force, like a population response of M1 neurons. Moreover, a distribution of the preferred directions (PDs) of M1 neurons can be predicted via feedback gain. Therefore, we suggest that neural activity in M1 is optimised for the musculoskeletal system. Furthermore, if the feedback controller is represented in M1, OFC can describe multiple representations of M1, including not only the distribution of PDs but also the response of the neuronal population.  相似文献   
103.
We investigated the change in bacterial community structure after drilling boreholes, 09-V250-M02 and 09-V250-M03, in the 250-m deep research gallery of the Horonobe Underground Research Laboratory. In the 09-V250-M02 borehole, ?-Proteobacteria were predominantly detected in the clone library analyses of the groundwater samples conducted immediately after drilling. All the ?-Proteobacteria clones were closely related to Arcobacter spp., which are known to be sulfide-oxidizing chemoautotrophic bacteria. After 4 years, the microbial structure drastically changed, and most detected operational taxonomic units were uncultured species such as candidate division OP9 and Chloroflexi relatives, which are frequently detected in deep sea sediments. The results indicated that the microbial community structure was drastically affected by borehole drilling and was concomitant with oxidation perturbation. However, these disturbed microbial communities changed within a few years to a microbial community composed of uncultivated species such as OP9 and Chloroflexi.  相似文献   
104.
The differential discrimination of nitrogen isotopes (15N/14N) within amino acids in consumers and their diets has been routinely used to estimate organismal tropic position (TP). Analogous isotopic discrimination can occur within plants, particularly in organs lacking chloroplasts. Such discrimination likely arises from the catabolic deamination of amino acids, resulting in a numerical elevation of estimated TP, within newly synthesized biomass. To investigate this phenomenon, we examined the 15N/14N of amino acids (δ15NAA) in spring leaves and flowers from eight deciduous and two annual plants. These plants were classified on the basis of their time of bloom, plants that bloomed when their leaves were absent (Type I) versus plants that bloomed while leaves were already present (Type II). Based on the δ15NAA values from leaves, both plant types occupied comparable and ecologically realistic mean TPs (=1.0 ± 0.1, mean ± 1σ). However, the estimated TPs of flowers varied significantly (Type I: 2.2 ± 0.2; Type II: 1.0 ± 0.1). We hypothesize that these results can be interpreted by the following sequence of events: (1) Type I floral biomass is synthesized in absence of active photosynthesis; (2) the catabolic deamination of amino acids in particular, leaves behind 15N in the residual pool of amino acids; and (3) the incorporation of these 15N‐enriched amino acids within the biomass of Type I flowers results in the numerical elevation of the TPs. In contrast, the actively photosynthesizing Type II leaves energetically sustain the synthesis of Type II flower biomass, precluding any reliance on catabolic deamination of amino acids. Amino acids within Type II flowers are therefore isotopically comparable to the Type II leaves. These findings demonstrate the idiosyncratic nature of the δ15NAA values within autotrophic organs and have implications for interpreting trophic hierarchies using primary producers and their consumers.  相似文献   
105.
The phytochromes (phyA to phyE) are a major plant photoreceptor family that regulate a diversity of developmental processes in response to light. The N-terminal 651-amino acid domain of phyB (N651), which binds an open tetrapyrrole chromophore, acts to perceive and transduce regulatory light signals in the cell nucleus. The N651 domain comprises several subdomains: the N-terminal extension, the Per/Arnt/Sim (PAS)-like subdomain (PLD), the cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) subdomain, and the phytochrome (PHY) subdomain. To define functional roles for these subdomains, we mutagenized an Arabidopsis thaliana line expressing N651 fused in tandem to green fluorescent protein, beta-glucuronidase, and a nuclear localization signal. A large-scale screen for long hypocotyl mutants identified 14 novel intragenic missense mutations in the N651 moiety. These new mutations, along with eight previously identified mutations, were distributed throughout N651, indicating that each subdomain has an important function. In vitro analysis of the spectral properties of these mutants enabled them to be classified into two principal classes: light-signal perception mutants (those with defective spectral activity), and signaling mutants (those normal in light perception but defective in intracellular signal transfer). Most spectral mutants were found in the GAF and PHY subdomains. On the other hand, the signaling mutants tend to be located in the N-terminal extension and PLD. These observations indicate that the N-terminal extension and PLD are mainly involved in signal transfer, but that the C-terminal GAF and PHY subdomains are responsible for light perception. Among the signaling mutants, R110Q, G111D, G112D, and R325K were particularly interesting. Alignment with the recently described three-dimensional structure of the PAS-GAF domain of a bacterial phytochrome suggests that these four mutations reside in the vicinity of the phytochrome light-sensing knot.  相似文献   
106.
107.
To address the role of glycosylation on fibrillogenicity of amyloidogenic chicken cystatin, the consensus sequence for N-linked glycosylation (Asn106-Ile108 --> Asn106-Thr108) was introduced by site-directed mutagenesis into the wild-type and amyloidogenic chicken cystatins to construct the glycosylated form of chicken cystatins. Both the glycosylated and unglycosylated forms of wild-type and amyloidogenic mutant I66Q cystatin were expressed and secreted in a culture medium of yeast Pichia pastoris transformants. Comparison of the amount of insoluble aggregate, the secondary structure, and fibrillogenicity has shown that the N-linked glycosylation could prevent amyloid fibril formation of amyloidogenic chicken cystatin secreted in yeast cells without affecting its inhibitory activities. Further study showed this glycosylation could inhibit the formation of cystatin dimers. Therefore, our data strongly suggested that the mechanism causing the prevention of amyloidogenic cystation fibril formation may be realized through suppression of the formation of three-dimensional domain-swapped dimers and oligomers of amyloidogenic cystatin by the glycosylated chains at position 106.  相似文献   
108.
Diacylglycerol kinases (DGKs) convert diacylglycerol (DG) to phosphatidic acid, and both lipids are known to play important roles in lipid signal transduction. Thereby, DGKs are considered to be a one of the key players in lipid signaling, but its physiological function remains to be solved. In an effort to investigate one of nine subtypes, we found that DGKgamma came to be localized in the nucleus with time in all cell lines tested while seen only in the cytoplasm at the early stage of culture, indicating that DGKgamma is transported from the cytoplasm to the nucleus. The nuclear transportation of DGKgamma didn't necessarily need DGK activity, but its C1 domain was indispensable, suggesting that the C1 domain of DGKgamma acts as a nuclear transport signal. Furthermore, to address the function of DGKgamma in the nucleus, we produced stable cell lines of wild-type DGKgamma and mutants, including kinase negative, and investigated their cell size, growth rate, and cell cycle. The cells expressing the kinase-negative mutant of DGKgamma were larger in size and showed slower growth rate, and the S phase of the cells was extended. These findings implicate that nuclear DGKgamma regulates cell cycle.  相似文献   
109.
Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system by opening ion channels upon the binding of glutamate. Despite the essential roles of glutamate in the control of reproduction and anterior pituitary hormone secretion, there is a limited understanding of how glutamate receptors control ovulation. Here we reveal the function of the ionotropic glutamate receptor AMPA-1 (GRIA1) in ovulation. Based on a genome-wide association study in Bos taurus, we found that ovulation rate is influenced by a variation in the N-terminal leucine/isoleucine/valine-binding protein (LIVBP) domain of GRIA1, in which serine is replaced by asparagine. GRIA1(Asn) has a weaker affinity to glutamate than GRIA1(Ser), both in Xenopus oocytes and in the membrane fraction of bovine brain. This single amino acid substitution leads to the decreased release of gonadotropin-releasing hormone (GnRH) in immortalized hypothalamic GT1-7 cells. Cows with GRIA1(Asn) have a slower luteinizing hormone (LH) surge than cows with GRIA1(Ser). In addition, cows with GRIA1(Asn) possess fewer immature ovarian follicles before superovulation and have a lower response to hormone treatment than cows with GRIA1(Ser). Our work identified that GRIA1 is a critical mediator of ovulation and that GRIA1 might be a useful target for reproductive therapy.  相似文献   
110.
Matrix metalloproteinase (MMP) plays an important role in homeostatic regulation of the extracellular environment and degradation of matrix. During liver fibrosis, several MMPs, including MMP-2, are up-regulated in activated hepatic stellate cells, which are responsible for exacerbation of liver cirrhosis. However, it remains unclear how loss of MMP-2 influences molecular dynamics associated with fibrogenesis in the liver. To explore the role of MMP-2 in hepatic fibrogenesis, we employed two fibrosis models in mice; toxin (carbon tetrachloride, CCl4)-induced and cholestasis-induced fibrosis. In the chronic CCl4 administration model, MMP-2 deficient mice exhibited extensive liver fibrosis as compared with wild-type mice. Several molecules related to activation of hepatic stellate cells were up-regulated in MMP-2 deficient liver, suggesting that myofibroblastic change of hepatic stellate cells was promoted in MMP-2 deficient liver. In the cholestasis model, fibrosis in MMP-2 deficient liver was also accelerated as compared with wild type liver. Production of tissue inhibitor of metalloproteinase 1 increased in MMP-2 deficient liver in both models, while transforming growth factor β, platelet-derived growth factor receptor and MMP-14 were up-regulated only in the CCl4 model. Our study demonstrated, using 2 experimental murine models, that loss of MMP-2 exacerbates liver fibrosis, and suggested that MMP-2 suppresses tissue inhibitor of metalloproteinase 1 up-regulation during liver fibrosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号