首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   26篇
  2023年   2篇
  2022年   4篇
  2021年   4篇
  2020年   4篇
  2019年   3篇
  2018年   6篇
  2017年   4篇
  2015年   11篇
  2014年   14篇
  2013年   19篇
  2012年   12篇
  2011年   13篇
  2010年   12篇
  2009年   1篇
  2008年   19篇
  2007年   19篇
  2006年   26篇
  2005年   15篇
  2004年   23篇
  2003年   11篇
  2002年   10篇
  2001年   12篇
  2000年   13篇
  1999年   9篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   8篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   3篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有314条查询结果,搜索用时 15 毫秒
51.
Polymer-bound nitridomolybdenum(VI) complexes, MoNCl3(polystyrene-bound bipyridyl) (I), MoNCl2(bpy)(polystyrene-bound benzylthiolato) (II), and MoNCl (S-t-Bu)(bpy)(polystyrene-bound benzylthiolato) (III), were synthesized by the reaction of MoNCl3(CH3CN)x or MoNCl3(bpy) with polystyrene-bound bipyridyl or benzylthiol. The polymer-bound nitridomolybdenum complexes were characterized by photo-acoustic and resonance Raman spectra. Hydrolysis or hydrolytic reduction of the nitridomolybdenum(VI) complexes resulted in the formation of ammonia in the following order of yield: III & II & I. Coordination of the polymer thiolato ligands is thus important in enhancing reductive cleavage of the nitridomolybdenum bond.  相似文献   
52.
Previous studies have convincingly argued that reactive oxygen species (ROS ) contribute to the development of several major types of sensorineural hearing loss, such as noise‐induced hearing loss (NIHL ), drug‐induced hearing loss, and age‐related hearing loss. However, the underlying molecular mechanisms induced by ROS in these pathologies remain unclear. To resolve this issue, we established an in vivo model of ROS overproduction by generating a transgenic (TG ) mouse line expressing the human NADPH oxidase 4 (NOX 4, NOX 4‐ TG mice), which is a constitutively active ROS ‐producing enzyme that does not require stimulation or an activator. Overproduction of ROS was detected at the cochlea of the inner ear in NOX 4 ‐TG mice, but they showed normal hearing function under baseline conditions. However, they demonstrated hearing function vulnerability, especially at high‐frequency sounds, upon exposure to intense noise, which was accompanied by loss of cochlear outer hair cells (OHC s). The vulnerability to loss of hearing function and OHC s was rescued by treatment with the antioxidant Tempol. Additionally, we found increased protein levels of the heat‐shock protein 47 (HSP 47) in models using HEK 293 cells, including H2O2 treatment and cells with stable and transient expression of NOX 4. Furthermore, the up‐regulated levels of Hsp47 were observed in both the cochlea and heart of NOX 4 ‐TG mice. Thus, antioxidant therapy is a promising approach for the treatment of NIHL . Hsp47 may be an endogenous antioxidant factor, compensating for the chronic ROS overexposure in vivo , and counteracting ROS ‐related hearing loss.

  相似文献   
53.
We report a series of tranylcypromine analogues containing a fluorine in the cyclopropyl ring. A number of compounds with additional m- or p-substitution of the aryl ring were micromolar inhibitors of the LSD1 enzyme. In cellular assays, the compounds inhibited the proliferation of acute myeloid leukemia cell lines. Increased levels of the biomarkers H3K4me2 and CD86 were consistent with LSD1 target engagement.  相似文献   
54.
Primary motor cortex (M1) neurons are tuned in response to several parameters related to motor control, and it was recently reported that M1 is important in feedback control. However, it remains unclear how M1 neurons encode information to control the musculoskeletal system. In this study, we examined the underlying computational mechanisms of M1 based on optimal feedback control (OFC) theory, which is a plausible hypothesis for neuromotor control. We modelled an isometric torque production task that required joint torque to be regulated and maintained at desired levels in a musculoskeletal system physically constrained by muscles, which act by pulling rather than pushing. Then, a feedback controller was computed using an optimisation approach under the constraint. In the presence of neuromotor noise, known as signal-dependent noise, the sensory feedback gain is tuned to an extrinsic motor output, such as the hand force, like a population response of M1 neurons. Moreover, a distribution of the preferred directions (PDs) of M1 neurons can be predicted via feedback gain. Therefore, we suggest that neural activity in M1 is optimised for the musculoskeletal system. Furthermore, if the feedback controller is represented in M1, OFC can describe multiple representations of M1, including not only the distribution of PDs but also the response of the neuronal population.  相似文献   
55.
56.
Efficient reproduction using natural mating and reproduction technology [in vitro fertilization (IVF) and embryo transfer (ET)] was investigated in IRS2 deficient mice with C57BL/6JJcl genetic background (Irs2(-/-) mice) as a typical type 2 diabetes model. From the results using various combinations of Irs2(-/-) and Irs2(-/+) mice, the combination of female Irs2(-/+) x male Irs2(-/-) was found to be more efficient than other combinations. In applications of reproduction technology using IVF and ET, the combination of female Irs2(-/+) x male Irs2(-/-) involves the possibility of Irs2(-/-) production by repeats using female Irs2(-/+) mice. However, reproductive continuity using this combination is difficult because of dependence on human technique and the cost of ET. Therefore, we concluded that Irs2(-/-) mice should be produced by embryo transfer using Irs2(-/-) mice from a colony consisting of female Irs2(-/+) x male Irs2(-/-).  相似文献   
57.
To address the role of glycosylation on fibrillogenicity of amyloidogenic chicken cystatin, the consensus sequence for N-linked glycosylation (Asn106-Ile108 --> Asn106-Thr108) was introduced by site-directed mutagenesis into the wild-type and amyloidogenic chicken cystatins to construct the glycosylated form of chicken cystatins. Both the glycosylated and unglycosylated forms of wild-type and amyloidogenic mutant I66Q cystatin were expressed and secreted in a culture medium of yeast Pichia pastoris transformants. Comparison of the amount of insoluble aggregate, the secondary structure, and fibrillogenicity has shown that the N-linked glycosylation could prevent amyloid fibril formation of amyloidogenic chicken cystatin secreted in yeast cells without affecting its inhibitory activities. Further study showed this glycosylation could inhibit the formation of cystatin dimers. Therefore, our data strongly suggested that the mechanism causing the prevention of amyloidogenic cystation fibril formation may be realized through suppression of the formation of three-dimensional domain-swapped dimers and oligomers of amyloidogenic cystatin by the glycosylated chains at position 106.  相似文献   
58.
Diacylglycerol kinases (DGKs) convert diacylglycerol (DG) to phosphatidic acid, and both lipids are known to play important roles in lipid signal transduction. Thereby, DGKs are considered to be a one of the key players in lipid signaling, but its physiological function remains to be solved. In an effort to investigate one of nine subtypes, we found that DGKgamma came to be localized in the nucleus with time in all cell lines tested while seen only in the cytoplasm at the early stage of culture, indicating that DGKgamma is transported from the cytoplasm to the nucleus. The nuclear transportation of DGKgamma didn't necessarily need DGK activity, but its C1 domain was indispensable, suggesting that the C1 domain of DGKgamma acts as a nuclear transport signal. Furthermore, to address the function of DGKgamma in the nucleus, we produced stable cell lines of wild-type DGKgamma and mutants, including kinase negative, and investigated their cell size, growth rate, and cell cycle. The cells expressing the kinase-negative mutant of DGKgamma were larger in size and showed slower growth rate, and the S phase of the cells was extended. These findings implicate that nuclear DGKgamma regulates cell cycle.  相似文献   
59.
Matrix metalloproteinase (MMP) plays an important role in homeostatic regulation of the extracellular environment and degradation of matrix. During liver fibrosis, several MMPs, including MMP-2, are up-regulated in activated hepatic stellate cells, which are responsible for exacerbation of liver cirrhosis. However, it remains unclear how loss of MMP-2 influences molecular dynamics associated with fibrogenesis in the liver. To explore the role of MMP-2 in hepatic fibrogenesis, we employed two fibrosis models in mice; toxin (carbon tetrachloride, CCl4)-induced and cholestasis-induced fibrosis. In the chronic CCl4 administration model, MMP-2 deficient mice exhibited extensive liver fibrosis as compared with wild-type mice. Several molecules related to activation of hepatic stellate cells were up-regulated in MMP-2 deficient liver, suggesting that myofibroblastic change of hepatic stellate cells was promoted in MMP-2 deficient liver. In the cholestasis model, fibrosis in MMP-2 deficient liver was also accelerated as compared with wild type liver. Production of tissue inhibitor of metalloproteinase 1 increased in MMP-2 deficient liver in both models, while transforming growth factor β, platelet-derived growth factor receptor and MMP-14 were up-regulated only in the CCl4 model. Our study demonstrated, using 2 experimental murine models, that loss of MMP-2 exacerbates liver fibrosis, and suggested that MMP-2 suppresses tissue inhibitor of metalloproteinase 1 up-regulation during liver fibrosis.  相似文献   
60.
Endothelial nitric oxide synthase (eNOS) is the primary enzyme that produces nitric oxide (NO), which plays an important role in blood vessel relaxation. eNOS activation is stimulated by various mechanical forces, such as shear stress. Several studies have shown that local cooling of the human finger causes strong vasoconstriction, followed after several minutes by cold-induced vasodilation (CIVD). However, the role played by endothelial cells (ECs) in blood vessel regulation in respond to cold temperatures is not fully understood. In this study, we found that low temperature alone does not significantly increase or decrease eNOS activation in ECs. We further found that the combination of shear stress with temperature change leads to a significant increase in eNOS activation at 37 °C and 28 °C, and a decrease at 4 °C. These results show that ECs play an important role in blood vessel regulation under shear stress and low temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号