首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   15篇
  129篇
  2021年   2篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   3篇
  2013年   7篇
  2012年   12篇
  2011年   8篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   7篇
  2006年   4篇
  2005年   3篇
  2004年   6篇
  2003年   3篇
  2002年   6篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1998年   9篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   5篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1972年   1篇
  1968年   1篇
  1948年   1篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
11.
Amyloid fibrillar aggregates isolated from the brains of patients with neurodegenerative diseases invariably have post‐translational modifications (PTMs). The roles that PTMs play in modulating the structures and polymorphism of amyloid aggregates, and hence their ability to catalyze the conversion of monomeric protein to their fibrillar structure is, however, poorly understood. This is particularly true in the case of tau aggregates, where specific folds of fibrillar tau have been implicated in specific tauopathies. Several PTMs, including acetylation at Lys 280, increase aggregation of tau in the brain, and increase neurodegeneration. In this study, tau‐K18 K280Q, in which the Lys 280 → Gln mutation is used to mimic acetylation at Lys 280, is shown, using HX‐MS measurements, to form fibrils with a structural core that is longer than that of tau‐K18 fibrils. Measurements of critical concentrations show that the binding affinity of monomeric tau‐K18 for its fibrillar counterpart is only marginally more than that of monomeric tau‐K18 K280Q for its fibrillar counterpart. Quantitative analysis of the kinetics of seeded aggregation, using a simple Michaelis–Menten‐like model, in which the monomer first binds and then undergoes conformational conversion to β‐strand, shows that the fibrils of tau‐K18 K280Q convert monomeric protein more slowly than do fibrils of tau‐K18. In contrast, monomeric tau‐K18 K280Q is converted faster to fibrils than is monomeric tau‐K18. Thus, the effect of Lys 280 acetylation on tau aggregate propagation in brain cells is expected to depend on the amount of acetylated tau present, and on whether the propagating seed is acetylated at Lys 280 or not.  相似文献   
12.
Understanding the heterogeneity of the soluble oligomers and protofibrillar structures that form initially during the process of amyloid fibril formation is a critical aspect of elucidating the mechanism of amyloid fibril formation by proteins. The small protein barstar offers itself as a good model protein for understanding this aspect of amyloid fibril formation, because it forms a stable soluble oligomer, the A form, at low pH, which can transform into protofibrils. The mechanism of formation of protofibrils from soluble oligomer has been studied by multiple structural probes, including binding to the fluorescent dye thioflavin T, circular dichroism and dynamic light scattering, and at different temperatures and different protein concentrations. The kinetics of the increase in any probe signal are single exponential, and the rate measured depends on the structural probe used to monitor the reaction. Fastest is the rate of increase in the mean hydrodynamic radius, which grows from a value of 6 nm for the A form to 20 nm for the protofibril. Slower is the rate of increase in thioflavin T binding capacity, and slowest is the rate of increase in circular dichroism at 216 nm, which occurs at about the same rate as that of the increase in light scattering intensity. The dynamic light scattering measurements suggest that the A form transforms completely into larger size aggregates at an early stage during the aggregation process. It appears that structural changes within the aggregates occur at the late stages of assembly into protofibrils. For all probes, and at all temperatures, no initial lag phase in protofibril growth is observed for protein concentrations in the range of 1 microM to 50 microM. The absence of a lag phase in the increase of any probe signal suggests that aggregation of the A form to protofibrils is not nucleation dependent. In addition, the absence of a lag phase in the increase of light scattering intensity, which changes the slowest, suggests that protofibril formation occurs through more than one pathway. The rate of aggregation increases with increasing protein concentration, but saturates at high concentrations. An analysis of the dependence of the apparent rates of protofibril formation, determined by the four structural probes, indicates that the slowest step during protofibil formation is lateral association of linear aggregates. Conformational conversion occurs concurrently with lateral association, and does so in two steps leading to the creation of thioflavin T binding sites and then to an increase in beta-sheet structure. Overall, the study indicates that growth during protofibril formation occurs step-wise through progressively larger and larger aggregates, via multiple pathways, and finally through lateral association of critical aggregates.  相似文献   
13.
Monellin is an intensely sweet-tasting protein present in the berry of Dioscoreophyllum cumminsii. Naturally occurring monellin (double chain monellin) is a heterodimer of two subunits commonly referred to as chain A and chain B. Monellin is a good model system for structural and dynamic studies of proteins. Single chain monellin has been generated by covalently linking the two subunits of naturally occurring double chain monellin, and has been used extensively for folding and unfolding studies, as well as for protein aggregation studies. There are, however, relatively few reports on such studies with double chain monellin. The primary difficulty associated with studies using double chain monellin appears to be the lack of a standard purification method. Here, a simple method for the purification of double chain monellin is presented. The genes encoding the two chains of monellin were cloned into a modified pETDUET vector under separate T7 promoters. The expression vector containing the genes of the two chains was expressed in E. coli BL21 Star (DE3). The expressed protein was purified using two steps of chromatography, ion exchange chromatography and gel filtration chromatography. This expression system consistently produced 40 mg of pure double chain monellin per litre of E. coli culture, in the correctly folded native state. The purity of the protein was confirmed by mass spectrometry and SDS-PAGE analysis. The purified protein was characterized using different spectroscopic methods, and the spectra obtained were in good agreement with the published spectra of naturally occurring double chain monellin.  相似文献   
14.
Protein function is intimately related to the dynamics of the protein as well as to the dynamics of the solvent shell around the protein. Although it has been argued extensively that protein dynamics is slaved to solvent dynamics, experimental support for this hypothesis is scanty. In this study, measurements of fluorescence anisotropy decay kinetics have been used to determine the motional dynamics of the fluorophore acrylodan linked to several locations in a small protein barstar in its various structural forms, including the native and unfolded states as well as the acid and protofibril forms. Fluorescence upconversion and streak camera measurements have been used to determine the solvation dynamics around the fluorophore. Both the motional dynamics and solvent dynamics were found to be dependent upon the location of the probe as well as on the structural form of the protein. While the (internal) motional dynamics of the fluorophore occur in the 0.1-3 ns time domain, the observed mean solvent relaxation times are in the range of 20-300 ps. A strong positive correlation between these two dynamical modes was found in spite of the significant difference in their time scales. This observed correlation is a strong indicator of the coupling between solvent dynamics and the dynamics in the protein.  相似文献   
15.
The kinetics of proton transfer in Green Fluorescent Protein (GFP) have been studied as a model system for characterizing the correlation between dynamics and function of proteins in general. The kinetics in EGFP (a variant of GFP) were monitored by using a laser-induced pH jump method. The pH was jumped from 8 to 5 by nanosecond flash photolysis of the "caged proton," o-nitrobenzaldehyde, and subsequent proton transfer was monitored by following the decrease in fluorescence intensity. The modulation of proton transfer kinetics by external perturbants such as viscosity, pH, and subdenaturing concentrations of GdnHCl as well as of salts was studied. The rate of proton transfer was inversely proportional to solvent viscosity, suggesting that the rate-limiting step is the transfer of protons through the protein matrix. The rate is accelerated at lower pH values, and measurements of the fluorescence properties of tryptophan 57 suggest that the enhancement in rate is associated with an enhancement in protein dynamics. The rate of proton transfer is nearly independent of temperature, unlike the rate of the reverse process. When the stability of the protein was either decreased or increased by the addition of co-solutes, including the salts KCl, KNO(3), and K(2)SO(4), a significant decrease in the rate of proton transfer was observed in all cases. The lack of correlation between the rate of proton transfer and the stability of the protein suggests that the structure is tuned to ensure maximum efficiency of the dynamics that control the proton transfer function of the protein.  相似文献   
16.
An important goal in studies of protein aggregation is to obtain an understanding of the structural diversity that is characteristic of amyloid fibril and protofibril structures at the molecular level. In this study, what to our knowledge are novel assays based on time-resolved fluorescence anisotropy decay and dynamic quenching measurements of a fluorophore placed at different specific locations in the primary structure of a small protein, barstar, have been used to determine the extent to which the protein sequence participates in the structural core of protofibrils. The fluorescence measurements reveal the structural basis of how modulating solvent polarity results in the tuning of the protofibril conformation from a pair of parallel β-sheets in heat-induced protofibrils to a single parallel β-sheet in trifluorethanol-induced protofibrils. In trifluorethanol-induced protofibrils, the single β-sheet is shown to be built up from in-register β-strands formed by nearly the entire protein sequence, while in heat-induced protofibrils, the pair of β-sheets motif is built up from β-strands formed by only the last two-third of the protein sequence.  相似文献   
17.
Equilibrium amide hydrogen exchange studies of barstar have been carried out at pH 6.7, 32° SDC using one- and two-dimensional nuclear magnetic resonance. An unusually large fraction of the backbone amide hydrogens of barstar exchange too fast to be measured, and the exchange rates of only fifteen slow-exchanging amide sites including indole amides of two tryptophans could be measured in the presence of 0 to 1.8 M guanidine hydrochloride (GdnHCl). Measurement of exchange occurring in tens of seconds in the unfolding transition region was possible by the use of a fast stopped-flow mixing method. The observed exchange rates have been simulated in the EX2 limit according to a two-process model that incorporates two exchange-competent states: a transiently unfolded state (U*) in which many amide hydrogens are completely accessible to solvent-exchange, and a near-native locally unfolded state (N*), in which only one or a few amide hydrogens are completely accessible to solvent-exchange. The two-process model appears to account for the observed exchange behavior over the entire range of GdnHCl concentrations studied. For several measurable slow-exchanging amide hydrogens, the free energies of production of exchange-competent states from the exchange-incompetent native state are significantly higher than the free-energy of production of the equilibrium unfolded state from the native state, when the latter is determined from circular dichroism- or fluorescence-monitored equilibrium unfolding curves. The result implies that U*, which forms transiently in the strongly native-like conditions used for the hydrogen exchange studies, is higher in energy than the equilibrium-unfolded state. The higher energy of this transiently unfolded exchange-competent state can be attributed to either proline isomerization or to the presence of residual structure. On the basis of the free energies of production of exchange-competent states, the measured amide sites of barstar appear to define two structural subdomains—a three-helix unit and a two-β-strand unit in the core of the protein. Proteins 30:295–308, 1998. © 1998 Wiley-Liss, Inc.  相似文献   
18.
Renal fibrosis is the common histological feature of advanced glomerular and tubulointerstitial disease leading to end-stage renal disease (ESRD). However, specific antifibrotic therapies to slow down the evolution to ESRD are still absent. Because persistent inflammation is a key event in the development of fibrosis, we hypothesized that the proinflammatory kinin B1 receptor (B1R) could be such a new target. Here we show that, in the unilateral ureteral obstruction model of renal fibrosis, the B1R is overexpressed and that delayed treatment with an orally active nonpeptide B1R antagonist blocks macrophage infiltration, leading to a reversal of the level of renal fibrosis. In vivo bone marrow transplantation studies as well as in vitro studies on renal cells show that part of this antifibrotic mechanism of B1R blockade involves a direct effect on resident renal cells by inhibiting chemokine CCL2 and CCL7 expression. These findings suggest that blocking the B1R is a promising antifibrotic therapy.  相似文献   
19.

Background  

DNA repair is the general term for the collection of critical mechanisms which repair many forms of DNA damage such as methylation or ionizing radiation. DNA repair has mainly been studied in experimental and clinical situations, and relatively few information-based approaches to new extracting DNA repair knowledge exist. As a first step, automatic detection of DNA repair proteins in genomes via informatics techniques is desirable; however, there are many forms of DNA repair and it is not a straightforward process to identify and classify repair proteins with a single optimal method. We perform a study of the ability of homology and machine learning-based methods to identify and classify DNA repair proteins, as well as scan vertebrate genomes for the presence of novel repair proteins. Combinations of primary sequence polypeptide frequency, secondary structure, and homology information are used as feature information for input to a Support Vector Machine (SVM).  相似文献   
20.
Several species of Aspidosperma plants are used to treat diseases in the tropics, including Aspidosperma ramiflorum, which acts against leishmaniasis, an activity that is experimentally confirmed. The species, known as guatambu-yellow, yellow peroba, coffee-peroba andmatiambu, grows in the Atlantic Forest of Brazil in the South to the Southeast regions. Through a guided biofractionation of A. ramiflorum extracts, the plant activity against Plasmodium falciparum was evaluated in vitro for toxicity towards human hepatoma G2 cells, normal monkey kidney cells and nonimmortalised human monocytes isolated from peripheral blood. Six of the seven extracts tested were active at low doses (half-maximal drug inhibitory concentration < 3.8 µg/mL); the aqueous extract was inactive. Overall, the plant extracts and the purified compounds displayed low toxicity in vitro. A nonsoluble extract fraction and one purified alkaloid isositsirikine (compound 5) displayed high selectivity indexes (SI) (= 56 and 113, respectively), whereas compounds 2 and 3 were toxic (SI < 10). The structure, activity and low toxicity of isositsirikine in vitro are described here for the first time in A. ramiflorum, but only the neutral and precipitate plant fractions were tested for activity, which caused up to 53% parasitaemia inhibition of Plasmodium berghei in mice with blood-induced malaria. This plant species is likely to be useful in the further development of an antimalarial drug, but its pharmacological evaluation is still required.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号