首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1532篇
  免费   68篇
  2022年   9篇
  2021年   13篇
  2019年   9篇
  2018年   16篇
  2017年   14篇
  2016年   27篇
  2015年   30篇
  2014年   35篇
  2013年   140篇
  2012年   69篇
  2011年   63篇
  2010年   56篇
  2009年   47篇
  2008年   111篇
  2007年   91篇
  2006年   81篇
  2005年   105篇
  2004年   71篇
  2003年   68篇
  2002年   73篇
  2001年   32篇
  2000年   47篇
  1999年   42篇
  1998年   13篇
  1997年   19篇
  1996年   9篇
  1995年   18篇
  1994年   18篇
  1993年   11篇
  1992年   27篇
  1991年   28篇
  1990年   18篇
  1989年   21篇
  1988年   11篇
  1987年   13篇
  1986年   18篇
  1985年   11篇
  1984年   12篇
  1983年   13篇
  1982年   13篇
  1981年   11篇
  1980年   5篇
  1978年   7篇
  1976年   7篇
  1975年   7篇
  1974年   5篇
  1973年   5篇
  1972年   5篇
  1969年   4篇
  1968年   4篇
排序方式: 共有1600条查询结果,搜索用时 15 毫秒
991.
The development of proteinuria and glomerulosclerosis in kidney disease is associated with podocyte damage, including down-regulation of nephrin and podocin. Macrophages are known to induce renal injury, but the mechanisms involved are not fully understood. This study examined macrophage-mediated podocyte damage. Conditioned media (CM) from activated macrophages caused a 50-60% reduction in nephrin and podocin mRNA and protein expression in cultured mouse podocytes and rat glomeruli. This was abolished by a neutralizing anti-TNFα antibody. The addition of recombinant TNFα to podocytes or glomeruli caused a comparable reduction in podocyte nephrin and podocin expression to that of macrophage CM. Inhibition of c-Jun amino terminal kinase (JNK) or p38 kinase abolished the TNFα-induced reduction in nephrin and podocin expression. This study demonstrates that activated macrophages can induce podocyte injury via a TNFα-JNK/p38-dependent mechanism. This may explain, in part, the protective effects of JNK and p38 blockade in experimental kidney disease.  相似文献   
992.
Parkin is the gene product identified as the major cause of autosomal recessive juvenile Parkinsonism (AR-JP). Parkin, a ubiquitin ligase E3, contains a unique ubiquitin-like domain in its N-terminus designated Uld which is assumed to be a interaction domain with the Rpn 10 subunit of 26S proteasome. To elucidate the structural and functional role of Uld in parkin at the atomic level, the X-ray crystal structure of murine Uld was determined and a molecular dynamics simulation of wild Uld and its five mutants (K27N, R33Q, R42P, K48A and V56E) identified from AR-JP patients was performed. Murine Uld consists of two alpha helices [Ile23-Arg33 (alpha1) and Val56-Gln57 (alpha2)] and five beta strands [Met1-Phe7 (beta1), Tyr11-Asp18 (beta2), Leu41-Phe45 (beta3), Lys48-Pro51 (beta4) and Ser65-Arg72 (beta5)] and its overall structure is essentially the same as that of human ubiquitin with a 1.22 A rmsd for the backbone atoms of residues 1-76; however, the sequential identity and similarity between both molecules are 32% and 63%, respectively. This close resemblance is due to the core structure built by same hydrogen bond formations between and within the backbone chains of alpha1 and beta1/2/5 secondary structure elements and by nearly the same hydrophobic interactions formed between the nonpolar amino acids of their secondary structures. The side chain NetaH of Lys27 on the alpha1 helix was crucial to the stabilization of the spatial orientations of beta3 and beta4 strands, possible binding region with Rpn 10 subunit, through three hydrogen bonds. The MD simulations showed the K27N and R33Q mutations increase the structural fluctuation of these beta strands including the alpha1 helix. Reversely, the V56E mutant restricted the spatial flexibility at the periphery of the short alpha2 helix by the interactions between the polar atoms of Glu56 and Ser19 residues. However, a large fluctuation of beta4 strand with respect to beta5 strand was induced in the R42P mutant, because of the impossibility of forming paired hydrogen bonds of Pro for Arg42 in wild Uld. The X-ray structure showed that the side chains of Asp39, Gln40 and Arg42 at the N-terminal periphery of beta3 strand protrude from the molecular surface of Uld and participate in hydrogen bonds with the polar residues of neighboring Ulds. Thus, the MD simulation suggests that the mutation substitution of Pro for Arg42 not only causes the large fluctuation of beta3 strand in the Uld but also leads to the loss of the ability of Uld to trap the Rpn 10 subunit. In contrast, the MD simulation of K48A mutant showed little influence on the beta3-beta4 loop structure, but a large fluctuation of Lys48 side chain, suggesting the importance of flexibility of this side chain for the interaction with the Rpn 10 subunit. The present results would be important in elucidating the impaired proteasomal binding mechanism of parkin in AR-JP.  相似文献   
993.
“Autophagy” is a highly conserved pathway for degradation, by which wasted intracellular macromolecules are delivered to lysosomes, where they are degraded into biologically active monomers such as amino acids that are subsequently re-used to maintain cellular metabolic turnover and homeostasis. Recent genetic studies have shown that mice lacking an autophagy-related gene (Atg5 or Atg7) cannot survive longer than 12 h after birth because of nutrient shortage. Moreover, tissue-specific impairment of autophagy in central nervous system tissue causes massive loss of neurons, resulting in neurodegeneration, while impaired autophagy in liver tissue causes accumulation of wasted organelles, leading to hepatomegaly. Although autophagy generally prevents cell death, our recent study using conditional Atg7-deficient mice in CNS tissue has demonstrated the presence of autophagic neuron death in the hippocampus after neonatal hypoxic/ischemic brain injury. Thus, recent genetic studies have shown that autophagy is involved in various cellular functions. In this review, we introduce physiological and pathophysiological roles of autophagy.  相似文献   
994.
The extensive involvement of glycan-binding proteins (GBPs) as regulators in diverse biological phenomena provides a fundamental reason to investigate their glycan-binding specificities. Here, we developed a glycoconjugate microarray based on an evanescent-field fluorescence-assisted detection principle for investigation of GBPs. Eighty-nine selected multivalent glycoconjugates comprising natural glycoproteins, neo-glycoproteins, and polyacrylamide (PAA)-conjugated glycan epitopes were immobilized on an epoxy-activated glass slide. The GBP binding was monitored by an evanescent-field fluorescence-assisted scanner at equilibrium without washing steps. The detection principle also allows direct application of unpurified GBPs with the aid of specific antibodies. Model experiments using plant lectins (RCA120, ConA, and SNA), galectins (3 and 8), a C-type lectin (DC-SIGN) and a siglec (CD22) provided data consistent with previous work within 4 h using less than 40 ng of GBPs per analysis. As an application, serum profiling of antiglycan antibodies (IgG and IgM) was performed with Cy3-labeled secondary antibodies. Moreover, novel carbohydrate-binding ability was demonstrated for a human IL-18 binding protein. Thus, the developed glycan array is useful for investigation of various types of GBPs, with the added advantage of wash-free analysis.  相似文献   
995.
The Zinnia elegans cell culture system is a robust and physiologically relevant in vitro system for the study of xylem formation. Freshly isolated mesophyll cells of Zinnia can be hormonally induced to semisynchronously transdifferentiate into tracheary elements (TEs). Although the system has proven to be valuable, its utility is diminished by the lack of an efficient transformation protocol. We herein present a novel method to introduce DNA/RNA efficiently into Zinnia cells by electroporation-based transient transformation. Using reporter gene plasmids, we optimized the system for efficiency of transformation and ability for the transformed cells to transdifferentiate into TEs. Optimal conditions included a partial digestion of the cell walls by pectolyase, a low voltage and high capacitance electrical pulse and an optimal medium to maintain cell viability during transformation. Beyond the simple expression of a reporter protein in Zinnia cells, we extended our protocol to subcellular protein targeting, simultaneous co-expression of several reporter proteins and promoter-activity monitoring during TE differentiation. Most importantly, we tested the system for double-stranded RNA (dsRNA)-induced RNA silencing. By introducing in vitro -synthesized dsRNAs, we were able to phenocopy the Arabidopsis cellulose synthase (CesA) mutants that had defects in secondary cell-wall synthesis. Suppressing the expression of Zinnia CesA homologues resulted in an increase of abnormal TEs with aberrant secondary walls. Our electroporation-based transient transformation protocol provides the suite of tools long required for functional analysis and developmental studies at single cell levels.  相似文献   
996.
997.
Two methods of TSS diagnosis were evaluated: comparison of symptoms with clinical criteria and monitoring for evidence of selective activation of Vβ2+ T cells by the causative toxin, TSS toxin‐1 (TSST‐1). Ten patients with acute and systemic febrile infections caused by Staphylococcus aureus were monitored for increase in TSST‐1‐reactive Vβ2+ T cells during their clinical courses. Nine of the ten patients were diagnosed with TSS based on evidence of selective activation of Vβ2+ T cells by TSST‐1; however, clinical symptoms met the clinical criteria for TSS in only six of these nine patients. In the remaining patient, clinical symptoms met the clinical criteria, but selective activation of Vβ2+ T cells was not observed. Time taken to reach the diagnosis of TSS could be significantly shortened by utilizing the findings from tracing Vβ2+ T cells. In vitro studies showed that TSST‐1‐ reactive T cells from TSS patients were anergic in the early phase of their illness. Examining selective activation of Vβ2+ T cells could be a useful tool to supplement clinical criteria for early diagnosis of TSS.  相似文献   
998.
999.
Morphology and function of human organs and tissues are well maintained in the improved SCID (severe combined immunodeficient) mice for a long period (approximately 3 years). To study the radiation-induced damage on human thyroid gland, human thyroid tissues transplanted to SCID mice were consecutively exposed to X-rays or 137Cs gamma-rays at high and low dose rates for approximately 2 years. Consecutive irradiation resulted in the disappearance of follicles and significant decrease of thyroid hormone secretion. Mutations in p53 and c-kit genes were induced significantly in human thyroid tissues from old head and neck cancer patients (av. 56.8 years, 4 males) and a Graves' disease patient (20 years, male) over the dose of 24 Gy (44.7+/-5.9 Gy, mean+/-S.E) and 11 Gy (20.2+/-7.8 Gy), respectively, while mutations were not detected at lower doses nor in unexposed matched controls (p < 0.01). There were significant differences in mutation frequency in the transplanted human thyroid tissues (31 years, female) between high dose rate (1.19 Gy/min; 8 in 20 tissues) and low dose rate (0.00023 Gy/min; 0 in 14 tissues) exposures (p < 0.01). Mutations were not detected in RET, K-ras and beta-catenin genes. Expression analysis by GeneChip indicated that gene expression was also well maintained in the transplanted human thyroid tissues. However, lower doses (1 or 3 Gy) of 137Cs gamma-rays can induce changes in gene expression in the transplanted human thyroid tissues. Furthermore, fatally irradiated SCID mice could survive with human bone marrow cell transplantation. When about half of mouse bone marrows were replaced by human bone marrow cells, the human bone marrow cells showed high sensitivity to gamma-irradiation; 28.0% and 0.45% survival after 0.5 and 2.0 Gy exposures, respectively.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号