全文获取类型
收费全文 | 5546篇 |
免费 | 479篇 |
国内免费 | 4篇 |
专业分类
6029篇 |
出版年
2023年 | 31篇 |
2022年 | 86篇 |
2021年 | 130篇 |
2020年 | 58篇 |
2019年 | 71篇 |
2018年 | 92篇 |
2017年 | 77篇 |
2016年 | 140篇 |
2015年 | 216篇 |
2014年 | 228篇 |
2013年 | 286篇 |
2012年 | 403篇 |
2011年 | 320篇 |
2010年 | 220篇 |
2009年 | 181篇 |
2008年 | 293篇 |
2007年 | 293篇 |
2006年 | 254篇 |
2005年 | 227篇 |
2004年 | 226篇 |
2003年 | 183篇 |
2002年 | 169篇 |
2001年 | 184篇 |
2000年 | 162篇 |
1999年 | 129篇 |
1998年 | 52篇 |
1997年 | 44篇 |
1996年 | 28篇 |
1995年 | 38篇 |
1994年 | 36篇 |
1993年 | 35篇 |
1992年 | 92篇 |
1991年 | 77篇 |
1990年 | 80篇 |
1989年 | 84篇 |
1988年 | 61篇 |
1987年 | 62篇 |
1986年 | 68篇 |
1985年 | 68篇 |
1984年 | 54篇 |
1983年 | 49篇 |
1982年 | 40篇 |
1981年 | 28篇 |
1980年 | 31篇 |
1979年 | 42篇 |
1978年 | 31篇 |
1976年 | 27篇 |
1975年 | 27篇 |
1974年 | 34篇 |
1973年 | 36篇 |
排序方式: 共有6029条查询结果,搜索用时 15 毫秒
991.
Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV–induced diseases. 相似文献
992.
993.
Random conjugation of therapeutic or diagnostic payloads to targeting proteins generates functionally heterogeneous products. Conjugation of payloads to an adapter that binds to a peptide tag engineered into a targeting protein provides an alternative strategy. To progress into clinical development, an adapter/docking tag system should include humanized components and be stable in circulation. We describe here an adapter/docking tag system based on mutated fragments of human RNase I that spontaneously bind to each other and form a conjugate with a disulfide bond between complimentary cysteine residues. This self-assembled "dock and lock" system utilizes the previously described fusion C-tag, a 1-15 aa fragment of human RNase I with the R4C amino acid substitution, and a newly engineered adapter protein (Ad-C), a 21-127-aa fragment of human RNase I with the V118C substitution. Two vastly different C-tagged recombinant proteins, human vascular endothelial growth factor (VEGF) and a 254-aa long N-terminal fragment of anthrax lethal factor (LFn), retain functional activities after spontaneous conjugation of Ad-C to N-terminal or C-terminal C-tag, respectively. Ad-C modified with pegylated phospolipid and inserted into the lipid membrane of drug-loaded liposomes (Doxil) retained the ability to conjugate C-tagged proteins, yielding targeted liposomes decorated with functionally active proteins. To further optimize the system, we engineered an adapter with an additional cysteine residue at position 88 for site-specific modification, conjugated it to C-tagged VEGF, and labeled with a near-infrared fluorescent dye Cy5.5, yielding a unique functionally active probe for in vivo molecular imaging. We expect that this self-assembled "dock and lock" system will provide new opportunities for using functionally active proteins for biomedical purposes. 相似文献
994.
Differential activation and function of Rho GTPases during Salmonella-host cell interactions 下载免费PDF全文
Salmonella enterica, the cause of food poisoning and typhoid fever, has evolved sophisticated mechanisms to modulate Rho family guanosine triphosphatases (GTPases) to mediate specific cellular responses such as actin remodeling, macropinocytosis, and nuclear responses. These responses are largely the result of the activity of a set of bacterial proteins (SopE, SopE2, and SopB) that, upon delivery into host cells via a type III secretion system, activate specific Rho family GTPases either directly (SopE and SopE2) or indirectly (SopB) through the stimulation of an endogenous exchange factor. We show that different Rho family GTPases play a distinct role in Salmonella-induced cellular responses. In addition, we report that SopB stimulates cellular responses by activating SH3-containing guanine nucleotide exchange factor (SGEF), an exchange factor for RhoG, which we found plays a central role in the actin cytoskeleton remodeling stimulated by Salmonella. These results reveal a remarkable level of complexity in the manipulation of Rho family GTPases by a bacterial pathogen. 相似文献
995.
The effect of exogenous ethephon on cambial activity, xylem production and ray population in young shoots of Leucaena leucocephala was investigated anatomically. The application of ethephon showed a diphasic effect on cambial activity and xylogenesis in a dose dependent manner. Lower concentration of ethephon enhanced cambial activity while high concentrations reduced cambial cell divisions and daughter-cell differentiation. High ethephon concentration also resulted in shorter vessel elements, thick walled fibers and phenolic accumulation in ray cells and vessel elements, whereas low concentration allowed elongation of fibers and vessel elements. The density of rays increased significantly with increase in ethylene concentration. The evaluation of longitudinal sections of cambial zone in ethephon treated plants showed high frequency of transformation of fusiform initials into ray initials through divisions and segmentation, resulting in high ray frequency in both xylem and phloem. The present study demonstrates that ethylene plays an important role in regulating secondary vascular tissue composition by reducing the population of fusiform initials in the cambium. 相似文献
996.
Gene 4 of bacteriophage T7 encodes a protein (gp4) that can translocate along single-stranded DNA, couple the unwinding of duplex DNA with the hydrolysis of dTTP, and catalyze the synthesis of short RNA oligoribonucleotides for use as primers by T7 DNA polymerase. Electron microscopic studies have shown that gp4 forms hexameric rings, and X-ray crystal structures of the gp4 helicase domain and of the highly homologous RNA polymerase domain of Escherichia coli DnaG have been determined. Earlier biochemical studies have shown that when single-stranded DNA is bound to the hexameric ring, the primase domain remains accessible to free DNA. Given these results, a model was suggested in which the primase active site in the gp4 hexamer is located on the outside of the hexameric ring. We have used electron microscopy and single-particle image analysis to examine T7 gp4, and have determined that the primase active site is located on the outside of the hexameric ring, and therefore provide direct structural support for this model. 相似文献
997.
Annexins (ANXs) are a superfamily of proteins whose functional hallmark is Ca2+-dependent binding to anionic phospholipids. Their core domains are usually composed of a 4-fold repeat of a conserved amino acid sequence, with each repeat containing a type II Ca2+ binding site that is generally thought to mediate Ca2+-dependent binding to the membrane. We now report that ANX12 binding to phospholipid vesicles is highly cooperative with respect to Ca2+ concentration (Hill constant approximately 7), thereby suggesting that more than the four well-characterized type II Ca2+ binding sites are involved in phospholipid binding. Two independent approaches, a novel 45Ca2+ copelleting assay and isothermal titration calorimetry, indicate a stoichiometry of approximately 12 mol of Ca2+/mol of ANX12 for binding to phospholipid vesicles. On the basis of the "low-affinity" Ca2+-binding sites in a number of ANX X-ray crystal structures, we propose a model for ANX12 bilayer binding that involves three types of Ca2+ sites in each of the four repeats. In this model, there is a complementarity between the spacing of the ANX12 Ca2+ binding sites and the spacing of the phospholipid headgroups in bilayers. We tested the implications of the model by manipulating the physical state of vesicles composed of phospholipids with saturated acyl chains with temperature and measuring its influence on ANX12 binding. ANX12 bound to vesicles in a Ca2+-dependent manner when the vesicles were in the liquid crystal phase but not when the phospholipid was in the gel phase. Furthermore, ANX12 bound initially to fluid bilayers remained bound when cooled to 4 degrees C, a temperature that should induce the gel phase transition. Overall, these studies suggest that ANX12 is well suited to being a Ca2+ sensor for rapid all-or-none intercellular membrane-related events. 相似文献
998.
Nambi Aiyar Elayne Baker John Martin Arunbhai Patel Jeffrey M. Stadel Robert N. Willette Frank C. Barone 《Journal of neurochemistry》1995,65(3):1131-1138
Abstract: Calcitonin gene-related peptide (CGRP), a 37-amino-acid peptide, is a member of a small family of peptides including amylin or islet amyloid polypeptide and salmon calcitonin. These related peptides have been shown to display similar effects on in vitro and in vivo carbohydrate metabolism. The present study was initiated to identify and characterize the binding sites for these peptides in lung and nucleus accumbens membranes prepared from pig and guinea pig. Both tissues in either species displayed high-affinity (2-[125I]iodohistidyl10)humanCGRPα ([125I]hCGRPα) binding (IC50 = 0.4–7.7 nM), which was displaced by hCGRP8–37α with equally high affinity (IC50 = 0.4–7.3 nM). High-affinity binding for [125I]Bolton-Hunter human amylin ([125I]BH-h-amylin) was also observed in these tissues (IC50 = 0.2–6.0 nM). In membranes from the nucleus accumbens of both species, salmon calcitonin competed for amylin binding sites with high affinity (IC50 = 0.1 nM) but was poor in competing for amylin binding in lung membranes. Rat amylin8–37 competed for [125I]hCGRPα binding with higher affinity (IC50 = 5.4 nM) compared with [125I]BH-h-amylin binding (IC50 = 200 nM) in porcine nucleus accumbens, whereas in guinea pig nucleus accumbens, the IC50 values for rat amylin8–37 were 117 and 12 nM against [125I]hCGRPα and [125I]BH-h-amylin, respectively. Also, functional studies evaluating the activation of adenylate cyclase and generation of cyclic AMP in response to these agonists indicated that hCGRPα (EC50 = 0.3 nM), h-amylin (EC50 = 150 nM), and salmon calcitonin (EC50 = 1,000 nM) activated adenylate cyclase, resulting in increased cyclic AMP production in porcine lung membranes that was antagonized by hCGRP8–37α. The affinity of hCGRP8–37α was similar for all three peptides. The cyclic AMP responses to amylin and salmon calcitonin were significantly (p < 0.05) lower than that of hCGRPα and not additive, suggesting that they are acting as partial agonists at the same CGRP1-type receptor in porcine lung membranes. Similar observations were made for guinea pig lung membranes. However, human amylin and salmon calcitonin were weaker than hCGRPα in activating lung adenylate cyclase. None of these peptides activated adenylate cyclase in membranes prepared from the nucleus accumbens of both species. The data from these studies demonstrate both species and tissue differences in the existence of distinct CGRP and amylin binding sites and present a potential opportunity to study further CGRP and amylin receptor subtypes. 相似文献
999.
Amr Omer Devang Patel Xian Jin Lian Jason Sadek Sergio Di Marco Arnim Pause Myriam Gorospe Imed Eddine Gallouzi 《EMBO reports》2018,19(5)
Cellular senescence is a physiological response by which an organism halts the proliferation of potentially harmful and damaged cells. However, the accumulation of senescent cells over time can become deleterious leading to diseases and physiological decline. Our data reveal a novel interplay between senescence and the stress response that affects both the progression of senescence and the behavior of senescent cells. We show that constitutive exposure to stress induces the formation of stress granules (SGs) in proliferative and presenescent cells, but not in fully senescent cells. Stress granule assembly alone is sufficient to decrease the number of senescent cells without affecting the expression of bona fide senescence markers. SG‐mediated inhibition of senescence is associated with the recruitment of the plasminogen activator inhibitor‐1 (PAI‐1), a known promoter of senescence, to these entities. PAI‐1 localization to SGs increases the translocation of cyclin D1 to the nucleus, promotes RB phosphorylation, and maintains a proliferative, non‐senescent state. Together, our data indicate that SGs may be targets of intervention to modulate senescence in order to impair or prevent its deleterious effects. 相似文献
1000.
Agnieszka M. Szemiel Andres Merits Richard J. Orton Oscar A. MacLean Rute Maria Pinto Arthur Wickenhagen Gauthier Lieber Matthew L. Turnbull Sainan Wang Wilhelm Furnon Nicolas M. Suarez Daniel Mair Ana da Silva Filipe Brian J. Willett Sam J. Wilson Arvind H. Patel Emma C. Thomson Massimo Palmarini Alain Kohl Meredith E. Stewart 《PLoS pathogens》2021,17(9)
Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance. 相似文献