首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5546篇
  免费   479篇
  国内免费   4篇
  6029篇
  2023年   31篇
  2022年   86篇
  2021年   130篇
  2020年   58篇
  2019年   71篇
  2018年   92篇
  2017年   77篇
  2016年   140篇
  2015年   216篇
  2014年   228篇
  2013年   286篇
  2012年   403篇
  2011年   320篇
  2010年   220篇
  2009年   181篇
  2008年   293篇
  2007年   293篇
  2006年   254篇
  2005年   227篇
  2004年   226篇
  2003年   183篇
  2002年   169篇
  2001年   184篇
  2000年   162篇
  1999年   129篇
  1998年   52篇
  1997年   44篇
  1996年   28篇
  1995年   38篇
  1994年   36篇
  1993年   35篇
  1992年   92篇
  1991年   77篇
  1990年   80篇
  1989年   84篇
  1988年   61篇
  1987年   62篇
  1986年   68篇
  1985年   68篇
  1984年   54篇
  1983年   49篇
  1982年   40篇
  1981年   28篇
  1980年   31篇
  1979年   42篇
  1978年   31篇
  1976年   27篇
  1975年   27篇
  1974年   34篇
  1973年   36篇
排序方式: 共有6029条查询结果,搜索用时 15 毫秒
91.
92.
Background Muscle recovery following peripheral nerve repair is sup-optimal. Follistatin (FST), a potent muscle stimulant, enhances muscle size and satellite cell counts following reinnervation when administered as recombinant FST DNA via viral vectors. Local administration of recombinant FST protein, if effective, would be more clinically translatable but has yet to be investigated following muscle reinnervation. Objective  The aim of this study is to assess the effect of direct delivery of recombinant FST protein on muscle recovery following muscle reinnervation. Materials and Methods  In total, 72 Sprague-Dawley rats underwent temporary (3 or 6 months) denervation or sham denervation. After reinnervation, rats received FST protein (isoform FS-288) or sham treatment via a subcutaneous osmotic pump delivery system. Outcome measures included muscle force, muscle histomorphology, and FST protein quantification. Results  Follistatin treatment resulted in smaller muscles after 3 months denervation ( p  = 0.019) and reduced force after 3 months sham denervation ( p  < 0.001). Conversely, after 6 months of denervation, FST treatment trended toward increased force output ( p  = 0.066). Follistatin increased satellite cell counts after denervation ( p  < 0.001) but reduced satellite cell counts after sham denervation ( p  = 0.037). Conclusion  Follistatin had mixed effects on muscle weight and force. Direct FST protein delivery enhanced satellite cell counts following reinnervation. The positive effect on the satellite cell population is intriguing and warrants further investigation.  相似文献   
93.
94.
High-resolution proton and phosphorus nuclear magnetic resonance studies are reported on the self-complementary d(C1-G2-N3-G4-A5-A6-T7-T8-C9-O6meG10-C11-G12) duplexes (henceforth called O6meG X A 12-mer when N3 = A3 and O6meG X G 12-mer when N3 = G3), which contain symmetry-related A3 X O6meG10 and G3 X O6meG10 interactions in the interior of the helices. We observe inter-base-pair nuclear Overhauser effects (NOE) between the base protons at the N3 X O6meG10 modification site and protons of flanking G2 X C11 and G4 X C9 base-pairs, indicative of the stacking of N3 and O6meG10 bases in both O6meG X A 12-mer and O6meG X G 12-mer duplexes. We have assigned all the base and a majority of the sugar protons from two-dimensional proton-correlated and nuclear Overhauser effect experiments on the O6meG X A 12-mer duplex and O6meG X G 12-mer duplex in solution. The observed NOEs establish that the A3 and O6meG10 at the modification site and all other residues adopt the anti configuration about the glycosidic bond, and that the O6meG X A 12-mer forms a right-handed duplex. The interaction between the bulky purine A3 and O6meG10 residues in the anti orientation results in large proton chemical shift perturbations at the (G2-A3-G4) X (C9-O6meG10-C11) segments of the helix. By contrast, we demonstrate that the O6meG10 residue adopts a syn configuration, while all other bases adopt an anti configuration about the glycosidic bond in the right-handed O6meG X G 12-mer duplex. This results in altered NOE patterns between the base protons of O6meG10 and the base and sugar protons of flanking C9 and C11 residues in the O6meG X G 12-mer duplex. The phosphorus backbone is perturbed at the modification site in both duplexes, since the phosphorus resonances are dispersed over 2 parts per million in the O6meG X A 12-mer and over 1 part per million in the O6meG X G 12-mer compared to a 0.5 part per million dispersion for an unperturbed DNA helix. We propose tentative pairing schemes for the A3 X O6meG10 and G3 X O6meG10 interactions in the above dodecanucleotide duplexes.  相似文献   
95.
Restriction endonucleases for pulsed field mapping of bacterial genomes.   总被引:67,自引:17,他引:67  
Fundamental to many bacterial genome mapping strategies currently under development is the need to cleave the genome into a few large DNA fragments that can be resolved by pulsed field gel electrophoresis. Identification of endonucleases that infrequently cut a genome is of key importance in this process. We show that the tetranucleotide CTAG is extremely rare in most bacterial genomes with G+C contents above 45%. As a consequence, most of the sixteen bacterial genomes we have tested are cleaved less than once every 100,000 base pairs by one or more endonucleases that have CTAG in their recognition sequences: Xba I (TCTAGA), Spe I (ACTAGT), Avr II (CCTAGG) and Nhe I (GCTAGC). Similarly, CCG and CGG are the rarest trinucleotides in many genomes with G+C content of less than 45%. Thus, Sma I (CCCGGG), Rsr II (CGGWCCG), Nae I (GCCGGC) and Sac II (CCGCGG) are often suitable endonucleases for producing fragments that average over 100,000 base pairs from such genomes. Pulsed field gel electrophoresis of the fragments that result from cleavage with endonucleases that cleave only a few times per genome should assist in the physical mapping of many prokaryotic genomes.  相似文献   
96.
With an increasing interest in nanoparticulate delivery systems, there is a greater need to identify biomaterials that are biocompatible and safe for human applications. Protein polymers from animal and plant sources are promising materials for designing nanocarriers. Composition of the protein plays an important role for specific drug delivery applications such as drug release, targeting, and stimuli responsive drug release. An important issue in protein polymers is characteristics such as size, charge, and hydrophobicity may play a significant role in phagocytic uptake and initiating a subsequent immune response. This remains to be investigated systematically by analyzing factors that influence nanoparticle characteristics of protein and reduce phagocytic uptake and does not initiate immune response too. Although protein polymers are biodegradable, it is essential to ensure that there must not be premature enzymatic breakdown of the protein nanoparticles in the systemic circulation. Surface modification of the protein nanoparticles can be used to address this issue to propose the necessary modification in the surface of the protein would be great contribution in the nano particulate drug delivery systems (NPPDS). Of the various proteins, gelatin and albumin have been widely studied for drug delivery applications. Plant proteins are yet to be investigated widely for drug delivery applications so there is need to find out the plant proteins capable to act as nanoparticles. The commercial success of albumin-based nanoparticles has created an interest in other proteins. An increased understanding of the physicochemical properties coupled with the developments in rDNA technology will open up new opportunities for protein-based nanoparticulate systems. In the present studies several proteins currently useful for drug delivery system were structurally modeled and has been analyzed to propose the essential characteristics of protein for protein-based NPDDS.  相似文献   
97.
The intracellular accumulation of unesterified cholesterol was examined during 24 h of low density lipoprotein (LDL) uptake in normal and Niemann-Pick C fibroblasts by fluorescence microscopy with filipin staining and immunocytochemistry. Perinuclear fluorescence derived from filipin-sterol complexes was observed in both normal and mutant cells by 2 h. This perinuclear cholesterol staining reached its peak in normal cells at 6 h. Subsequent development of fluorescence during the remaining 18 h of LDL incubation was primarily limited to the plasma membrane region of normal cells. In contrast, mutant cells developed a much more intense perinuclear fluorescence throughout the entire 24 h of LDL uptake with little enhancement of cholesterol fluorescence staining in the plasma membranes. Direct mass measurements confirmed that internalized LDL cholesterol more readily replenishes the plasma membrane cholesterol of normal than of mutant fibroblasts. Perinuclear filipin-cholesterol fluorescence of both normal and mutant cells was colocalized with lysosomes by indirect immunocytochemical staining of lysosomal membrane protein. Abnormal sequestration of LDL cholesterol in mutant cells within a metabolically latent pool is supported by the finding that in vitro esterification of cellular cholesterol could be stimulated in mutant but not in normal cell homogenates by extensive disruption of the intracellular membranous structures of cells previously cultured with LDL. Deficient translocation of exogenously derived cholesterol from lysosomes to other intracellular membrane sites may be responsible for the delayed homeostatic responses associated with LDL uptake by mutant Niemann-Pick Type C fibroblasts.  相似文献   
98.
99.
Functional MRI (fMRI) studies have demonstrated that a number of brain regions (cingulate, insula, prefrontal, and sensory/motor cortices) display blood oxygen level-dependent (BOLD) positive activity during swallow. Negative BOLD activations and reproducibility of these activations have not been systematically studied. The aim of our study was to investigate the reproducibility of swallow-related cortical positive and negative BOLD activity across different fMRI sessions. We studied 16 healthy volunteers utilizing an fMRI event-related analysis. Individual analysis using a general linear model was used to remove undesirable signal changes correlated with motion, white matter, and cerebrospinal fluid. The group analysis used a mixed-effects multilevel model to identify active cortical regions. The volume and magnitude of a BOLD signal within each cluster was compared between the two study sessions. All subjects showed significant clustered BOLD activity within the known areas of cortical swallowing network across both sessions. The cross-correlation coefficient of percent fMRI signal change and the number of activated voxels across both positive and negative BOLD networks were similar between the two studies (r ≥ 0.87, P < 0.0001). Swallow-associated negative BOLD activity was comparable to the well-defined "default-mode" network, and positive BOLD activity had noticeable overlap with the previously described "task-positive" network. Swallow activates two parallel cortical networks. These include a positive and a negative BOLD network, respectively, correlated and anticorrelated with swallow stimulus. Group cortical activity maps, as well as extent and amplitude of activity induced by volitional swallowing in the cortical swallowing network, are reproducible between study sessions.  相似文献   
100.
Abstract: The objective of this study was to determine whether free radicals play a pathogenic role in neuronal apoptosis. The ability of Mn(III) tetrakis(benzoic acid) porphyrin (MnTBAP), a superoxide dismutase mimic, to inhibit staurosporine-induced neuronal apoptosis was tested in mixed cerebrocortical cultures. Staurosporine produced concentration-dependent cell death that was markedly inhibited by MnTBAP. Immunocytochemical analyses of cultures for neuron- and astrocyte-specific markers revealed that high concentrations of staurosporine induced the death of both neurons and astrocytes; both cell types were protected by MnTBAP. A less active congener of MnTBAP failed to protect cells against staurosporine-induced apoptosis. MnTBAP also protected cortical cultures against ceramide-induced apoptosis. These results support a role for oxidative stress in neuronal apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号