首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2053篇
  免费   129篇
  国内免费   1篇
  2183篇
  2022年   12篇
  2021年   22篇
  2019年   13篇
  2018年   18篇
  2017年   14篇
  2016年   22篇
  2015年   47篇
  2014年   60篇
  2013年   143篇
  2012年   79篇
  2011年   91篇
  2010年   62篇
  2009年   50篇
  2008年   74篇
  2007年   90篇
  2006年   83篇
  2005年   73篇
  2004年   75篇
  2003年   95篇
  2002年   75篇
  2001年   81篇
  2000年   71篇
  1999年   61篇
  1998年   22篇
  1997年   30篇
  1996年   21篇
  1994年   13篇
  1993年   20篇
  1992年   48篇
  1991年   46篇
  1990年   38篇
  1989年   42篇
  1988年   36篇
  1987年   41篇
  1986年   29篇
  1985年   47篇
  1984年   35篇
  1983年   19篇
  1982年   21篇
  1981年   19篇
  1980年   14篇
  1979年   22篇
  1978年   25篇
  1977年   14篇
  1975年   13篇
  1974年   16篇
  1973年   15篇
  1970年   17篇
  1969年   15篇
  1966年   14篇
排序方式: 共有2183条查询结果,搜索用时 15 毫秒
101.
A plaque morphology mutant (pm-522) of human papovavirus BK, which was rescued from a human papovavirus BK-induced hamster pineocytoma, was characterized and compared with a cloned wild-type virus (wt-501). Mutant pm-522 formed turbid plaques and grew more slowly than wt-501 in human embryonic kidney (HEK) cells. The immunofluorescence assay revealed that more HEK cells underwent abortive infection with pm-522 than with wt-501. Whereas wt-501 induced brain tumors and osteosarcomas, but no insulinomas, in hamsters, pm-522 induced brain tumors and insulinomas. The DNA of pm-522 was found by electrophoresis and electron microscopy to have a deletion (85 +/- 15 base pairs) and an insertion (40 +/- 10 base pairs) between map coordinates 0.708 and 0.725 from the endonuclease EcoRI cleavage site. These results demonstrate the presence of a viable deletion human papovarivus BK mutant capable of inducing insulinomas in hamsters.  相似文献   
102.
A new binding assay to investigate the mechanism of adhesion of lactic acid bacteria to the human intestine was established by the surface plasmon resonance technique using a biosensor BIACORE1000. Cells of 26 strains of the Lactobacillus acidophilus group as analytes were eluted onto a sensor chip on which were immobilized biotinylated A-trisaccharide polymer probes having human A-type antigen [(GalNAcalpha1-3(Fucalpha1-2)Gal)-] or human colonic mucin of blood type A (HCM-A) as ligands. In the first screening, high adhesive affinity to the A-trisaccharide BP-probe was observed in L. acidophilus OLL2769, L. crispatus JCM8778, LA205 and LA206. In the second screening, which used HCM-A, only L. acidophilus OLL2769 and L. crispatus JCM8778 were selected as adhesive strains with specific binding ability to human A-antigen. The results indicated that some strains of the L. acidophilus group could recognize and bind the sugar chain of A-antigen structure on HCM.  相似文献   
103.
Aniline-degraders were isolated from activated sludge and environmental samples and classified into eight phylogenetic groups. Seven groups were classified into Gram-negative bacteria, such as Acidovorax sp., Acinetobacter sp., Delftia sp., Comamonas sp., and Pseudomonas sp., suggesting the possible dominance of Gram-negative aniline-degraders in the environment. Aniline degradative genes were cloned from D. acidovorans strain 7N, and the nucleotide sequence of the 8,039-bp fragment containing eight open reading frames was determined. Their deduced amino acid sequences showed homologies to glutamine synthetase (GS)-like protein, glutamine amidotransferase (GA)-like protein, large and small subunits of aniline dioxygenase, reductase, LysR-type regulator, small ferredoxin-like protein, and catechol 2,3-dioxygenase, suggesting a high similarity of this gene cluster to those in P. putida strain UCC22 and Acinetobacter sp. strain YAA. Polymerase chain reaction (PCR) and sequencing analyses of GS-like protein gene segments of other Gram-negative bacteria suggested that Gram-negative bacteria have aniline degradative gene that can be divided into two distinctive groups.  相似文献   
104.
Ribosomal RNA (rRNA) synthesis in murine P1798 lymphosarcoma cells is reversibly inhibited by glucocorticoids. The effects of dexamethasone upon nucleolin phosphorylation and upon the amount and activity of casein kinase II have been examined. P1798 cells were exposed to 0.1 microM dexamethasone for 36 h. Cells were labeled in vivo with [32P]orthophosphate followed by immunoprecipitation with anti-nucleolin antibody. Nucleolin phosphorylation was reduced by 60% in dexamethasone-treated cells. Nucleoli were isolated and labeled with [gamma-32P]ATP in vitro. Nucleolin protein was reduced to 40% of control in nuclei from dexamethasone-treated cells. Nucleolin phosphorylation was reduced to 20% of control. Nucleolar casein kinase II activity and protein were also reduced (30-55% and 35-50% of control, respectively) by treatment with dexamethasone. Cycloheximide (10 micrograms/ml for 3 h) reduced the amount and activity of casein kinase II, but did not cause a decrease in nucleolin protein. These observations are discussed relative to the hypothesis that glucocorticoids regulate the amount or activity of proteins of short biological half-life that are involved in the regulation of rRNA synthesis.  相似文献   
105.
From bovine brain microtubules we purified tau protein kinase I (TPKI, Mr 45,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and tau protein kinase II (TPKII) whose activity was attributed to a 30-kDa protein on SDS-PAGE by affinity-labeling using an ATP analog. Both kinases were activated by tubulin. TPKII, but not TPKI, phosphorylated tau fragment peptides previously used for detection of a Ser/ThrPro kinase activity. Therefore, TPKII was considered to be the Ser/ThrPro kinase. TPKI was more effective than TPKII for producing the decrease of tau-1 immunoreactivity and mobility shift of tau on SDS-PAGE. Moreover, TPKI, but not TPKII nor other well-known protein kinases, generated an epitope present on paired helical filaments. These findings suggested that tau phosphorylated by TPKI resembled A-68, a component of paired helical filaments.  相似文献   
106.
Sleep and Biological Rhythms -  相似文献   
107.
Porphyromonas gingivalis strain 381 lipid A showed lower activity in inducing interleukin (IL)-1alpha and IL-1beta production and cytokine mRNA expression than synthetic Escherichia coli lipid A (compound 506) in alveolar macrophages of C57BL/6 mice. Both the lipid As induced tumor necrosis factor alpha in alveolar macrophages and IL-6 in peritoneal macrophages. A calmodulin (CaM) antagonist, W-7, inhibited IL-1beta production and its mRNA expression induced by P. gingivalis lipid A but not compound 506 in alveolar macrophages. A CaM kinase activator reduced the induction of IL-1beta in the serum of mice when administered with compound 506, and protected the mice against the lethal toxicity. The modulation of a variety of intracellular enzymes including the CaM kinase may result in clinical control of endotoxic sepsis.  相似文献   
108.
The ectopic expression of the glucose-dependent insulinotropic polypeptide receptor (GIPR) in the human adrenal gland causes significant hypercortisolemia after ingestion of each meal and leads to Cushing’s syndrome, implying that human GIPR activation is capable of robustly activating adrenal glucocorticoid secretion. In this study, we transiently transfected the human GIPR expression vector into cultured human adrenocortical carcinoma cells (H295R) and treated them with GIP to examine the direct link between GIPR activation and steroidogenesis. Using quantitative RT-PCR assay, we examined gene expression of steroidogenic related proteins, and carried out immunofluorescence analysis to prove that forced GIPR overexpression directly promotes production of steroidogenic enzymes CYP17A1 and CYP21A2 at the single cell level. Immunofluorescence showed that the transfection efficiency of the GIPR gene in H295R cells was approximately 5%, and GIP stimulation enhanced CYP21A2 and CYP17A1 expression in GIPR-introduced H295R cells (H295R-GIPR). Interestingly, these steroidogenic enzymes were also expressed in the GIPR (–) cells adjacent to the GIPR (+) cells. The mRNA levels of a cholesterol transport protein required for all steroidogenesis, StAR, and steroidogenic enzymes, HSD3β2, CYP11A1, CYP21A2, and CYP17A1 increased 1.2-2.1-fold in GIP-stimulated H295R-GIPR cells. These changes were reflected in the culture medium in which 1.5-fold increase in the cortisol concentration was confirmed. Furthermore, the levels of adenocorticotropic hormone (ACTH) receptor and ACTH precursor proopiomelanocortin (POMC) mRNA were upregulated 2- and 1.5-fold, respectively. Immunofluorescence showed that ACTH expression was detected in GIP-stimulated H295R-GIPR cells. An ACTH-receptor antagonist significantly inhibited steroidogenic gene expression and cortisol production. Immunostaining for both CYP17A1 and CYP21A2 was attenuated in cells treated with ACTH receptor antagonists as well as with POMC siRNA. These results demonstrated that GIPR activation promoted production and release of ACTH, and that steroidogenesis is activated by endogenously secreted ACTH following GIP administration, at least in part, in H295R cells.  相似文献   
109.
110.
Aggregation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological signature of amyotrophic lateral sclerosis (ALS). Although accumulating evidence suggests the involvement of RNA recognition motifs (RRMs) in TDP-43 proteinopathy, it remains unclear how native TDP-43 is converted to pathogenic forms. To elucidate the role of homeostasis of RRM1 structure in ALS pathogenesis, conformations of RRM1 under high pressure were monitored by NMR. We first found that RRM1 was prone to aggregation and had three regions showing stable chemical shifts during misfolding. Moreover, mass spectrometric analysis of aggregated RRM1 revealed that one of the regions was located on protease-resistant β-strands containing two cysteines (Cys-173 and Cys-175), indicating that this region served as a core assembly interface in RRM1 aggregation. Although a fraction of RRM1 aggregates comprised disulfide-bonded oligomers, the substitution of cysteine(s) to serine(s) (C/S) resulted in unexpected acceleration of amyloid fibrils of RRM1 and disulfide-independent aggregate formation of full-length TDP-43. Notably, TDP-43 aggregates with RRM1-C/S required the C terminus, and replicated cytopathologies of ALS, including mislocalization, impaired RNA splicing, ubiquitination, phosphorylation, and motor neuron toxicity. Furthermore, RRM1-C/S accentuated inclusions of familial ALS-linked TDP-43 mutants in the C terminus. The relevance of RRM1-C/S-induced TDP-43 aggregates in ALS pathogenesis was verified by immunolabeling of inclusions of ALS patients and cultured cells overexpressing the RRM1-C/S TDP-43 with antibody targeting misfolding-relevant regions. Our results indicate that cysteines in RRM1 crucially govern the conformation of TDP-43, and aberrant self-assembly of RRM1 at amyloidogenic regions contributes to pathogenic conversion of TDP-43 in ALS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号