首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   10篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   14篇
  2012年   30篇
  2011年   21篇
  2010年   10篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   3篇
  2005年   15篇
  2004年   9篇
  2003年   11篇
  2002年   9篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1997年   5篇
  1996年   2篇
  1994年   5篇
  1993年   4篇
  1992年   2篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1974年   1篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有231条查询结果,搜索用时 31 毫秒
91.
92.
The UN1 monoclonal antibody recognized the UN1 antigen as a heavily sialylated and O-glycosylated protein with the apparent molecular weight of 100-120 kDa; this antigen was peculiarly expressed in fetal tissues and several cancer tissues, including leukemic T cells, breast, and colon carcinomas. However, the lack of primary structure information has limited further investigation on the role of the UN1 antigen in neoplastic transformation. In this study, we have identified the UN1 antigen as CD43, a transmembrane sialoglycoprotein involved in cell adhesion, differentiation, and apoptosis. Indeed, mass spectrometry detected two tryptic peptides of the membrane-purified UN1 antigen that matched the amino acidic sequence of the CD43 intracellular domain. Immunological cross-reactivity, migration pattern in mono- and bi-dimensional electrophoresis, and CD43 gene-dependent expression proved the CD43 identity of the UN1 antigen. Moreover, the monosaccharide GalNAc-O-linked to the CD43 peptide core was identified as an essential component of the UN1 epitope by glycosidase digestion of specific glycan branches. UN1-type CD43 glycoforms were detected in colon, sigmoid colon, and breast carcinomas, whereas undetected in normal tissues from the same patients, confirming the cancer-association of the UN1 epitope. Our results highlight UN1 monoclonal antibody as a suitable tool for cancer immunophenotyping and analysis of CD43 glycosylation in tumorigenesis.  相似文献   
93.
Recently, we proposed a new mechanism for understanding the Warburg effect in cancer metabolism. In this new paradigm, cancer-associated fibroblasts undergo aerobic glycolysis, and extrude lactate to “feed” adjacent cancer cells, which then drives mitochondrial biogenesis and oxidative mitochondrial metabolism in cancer cells. Thus, there is vectorial transport of energy-rich substrates from the fibroblastic tumor stroma to anabolic cancer cells. A prediction of this hypothesis is that cancer-associated fibroblasts should express MCT4, a mono-carboxylate transporter that has been implicated in lactate efflux from glycolytic muscle fibers and astrocytes in the brain. To address this issue, we co-cultured MCF7 breast cancer cells with normal fibroblasts. Interestingly, our results directly show that breast cancer cells specifically induce the expression of MCT4 in cancer-associated fibroblasts; MCF7 cells alone and fibroblasts alone, both failed to express MCT4. We also show that the expression of MCT4 in cancer-associated fibroblasts is due to oxidative stress, and can be prevented by pre-treatment with the anti-oxidant N-acetyl-cysteine. In contrast to our results with MCT4, we see that MCT1, a transporter involved in lactate uptake, is specifically upregulated in MCF7 breast cancer cells when co-cultured with fibroblasts. Virtually identical results were also obtained with primary human breast cancer samples. In human breast cancers, MCT4 selectively labels the tumor stroma, e.g., the cancer-associated fibroblast compartment. Conversely, MCT1 was selectively expressed in the epithelial cancer cells within the same tumors. Functionally, we show that overexpression of MCT4 in fibroblasts protects both MCF7 cancer cells and fibroblasts against cell death, under co-culture conditions. Thus, we provide the first evidence for the existence of a stromal-epithelial lactate shuttle in human tumors, analogous to the lactate shuttles that are essential for the normal physiological function of muscle tissue and brain. These data are consistent with the “reverse Warburg effect,” which states that cancer-associated fibroblasts undergo aerobic glycolysis, thereby producing lactate, which is utilized as a metabolic substrate by adjacent cancer cells. In this model, “energy transfer” or “metabolic-coupling” between the tumor stroma and epithelial cancer cells “fuels” tumor growth and metastasis, via oxidative mitochondrial metabolism in anabolic cancer cells. Most importantly, our current findings provide a new rationale and novel strategy for anti-cancer therapies, by employing MCT inhibitors.Key words: caveolin-1, oxidative stress, pseudohypoxia, lactate shuttle, MCT1, MCT4, metabolic coupling, tumor stroma, predictive biomarker, SLC16A1, SLC16A3, monocarboxylic acid transporter  相似文献   
94.

Background

Current anti-malarial drugs have been selected on the basis of their activity against the symptom-causing asexual blood stage of the parasite. Which of these drugs also target gametocytes, in the sexual stage responsible for disease transmission, remains unknown. Blocking transmission is one of the main strategies in the eradication agenda and requires the identification of new molecules that are active against gametocytes. However, to date, the main limitation for measuring the effect of molecules against mature gametocytes on a large scale is the lack of a standardized and reliable method. Here we provide an efficient method to produce and purify mature gametocytes in vitro. Based on this new procedure, we developed a robust, affordable, and sensitive ATP bioluminescence-based assay. We then assessed the activity of 17 gold-standard anti-malarial drugs on Plasmodium late stage gametocytes.

Methods and Findings

Difficulties in producing large amounts of gametocytes have limited progress in the development of malaria transmission blocking assays. We improved the method established by Ifediba and Vanderberg to obtain viable, mature gametocytes en masse, whatever the strain used. We designed an assay to determine the activity of antimalarial drugs based on the intracellular ATP content of purified stage IV–V gametocytes after 48 h of drug exposure in 96/384-well microplates. Measurements of drug activity on asexual stages and cytotoxicity on HepG2 cells were also obtained to estimate the specificity of the active drugs.

Conclusions

The work described here represents another significant step towards determination of the activity of new molecules on mature gametocytes of any strain with an automated assay suitable for medium/high-throughput screening. Considering that the biology of the forms involved in the sexual and asexual stages is very different, a screen of our 2 million-compound library may allow us to discover novel anti-malarial drugs to target gametocyte-specific metabolic pathways.  相似文献   
95.
Aging drives large systemic reductions in oxidative mitochondrial function, shifting the entire body metabolically toward aerobic glycolysis, a.k.a, the Warburg effect. Aging is also one of the most significant risk factors for the development of human cancers, including breast tumors. How are these two findings connected? One simplistic idea is that cancer cells rebel against the aging process by increasing their capacity for oxidative mitochondrial metabolism (OXPHOS). Then, local and systemic aerobic glycolysis in the aging host would provide energy-rich mitochondrial fuels (such as L-lactate and ketones) to directly “fuel” tumor cell growth and metastasis. This would establish a type of parasite-host relationship or “two-compartment tumor metabolism,” with glycolytic/oxidative metabolic coupling. The cancer cells (“the seeds”) would flourish in this nutrient-rich microenvironment (“the soil”), which has been fertilized by host aging. In this scenario, cancer cells are only trying to save themselves from the consequences of aging by engineering a metabolic mutiny, through the amplification of mitochondrial metabolism. We discuss the recent findings of Drs. Ron DePinho (MD Anderson) and Craig Thomspson (Sloan-Kettering) that are also consistent with this new hypothesis, linking cancer progression with metabolic aging. Using data mining and bioinformatics approaches, we also provide key evidence of a role for PGC1a/NRF1 signaling in the pathogenesis of (1) two-compartment tumor metabolism and (2) mitochondrial biogenesis in human breast cancer cells.Key words: aging, mitochondria, cancer metabolism, autophagy, mitophagy, aerobic glycolysis, oxidative phosphorylation, Metformin, drug resistance, chemoresistance, Warburg effect, metabolic compartments, parasite, PGC1a, PGC1b, NRF1, two-compartment tumor metabolism  相似文献   
96.
NOV/CCN3 is one of the founding members of the CCN (Cyr61 CTGF NOV) family. In the avian retina, CCN3 expression is mostly located within the central region of the inner nuclear layer. As retinal development progresses and this retinal layer differentiates and matures, CCN3 expression forms a dorsal–ventral and a central–peripheral gradient. CCN3 is produced by two glial cell types, peripapillary cells and Müller cells, as well as by horizontal, amacrine, and bipolar interneurons. In retinal neurons and Müller cell cultures, CCN3 expression is induced by activated BMP signaling, whereas Notch signaling decreases CCN3 mRNA and protein levels in Müller cells and has no effect in retinal neurons. In Müller cells, the CCN3 expression detected may thus result from a balance between the Notch and BMP signaling pathways. © 2011 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   
97.
98.
Abexinostat is a pan histone deacetylase inhibitor (HDACi) that demonstrates efficacy in malignancy treatment. Like other HDACi, this drug induces a profound thrombocytopenia whose mechanism is only partially understood. We have analyzed its effect at doses reached in patient plasma on in vitro megakaryopoiesis derived from human CD34+ cells. When added at day 0 in culture, abexinostat inhibited CFU-MK growth, megakaryocyte (MK) proliferation and differentiation. These effects required only a short incubation period. Decreased proliferation was due to induction of apoptosis and was not related to a defect in TPO/MPL/JAK2/STAT signaling. When added later (day 8), the compound induced a dose-dependent decrease (up to 10-fold) in proplatelet (PPT) formation. Gene profiling from MK revealed a silencing in the expression of DNA repair genes with a marked RAD51 decrease at protein level. DNA double-strand breaks were increased as attested by elevated γH2AX phosphorylation level. Moreover, ATM was phosphorylated leading to p53 stabilization and increased BAX and p21 expression. The use of a p53 shRNA rescued apoptosis, and only partially the defect in PPT formation. These results suggest that HDACi induces a thrombocytopenia by a p53-dependent mechanism along MK differentiation and a p53-dependent and -independent mechanism for PPT formation.  相似文献   
99.
Volaire  F.  Lelièvre  F. 《Plant and Soil》2001,229(2):225-234
Drought survival in perennial forage plants involves different adaptative responses such as delay of dehydration through water uptake, limitation of water loss and tolerance of tissues to dessication. To compare the importance of these responses in contrasting cultivars of forage grasses at the whole plant level, we carried out two experiments under glasshouse conditions. Plants of cocksfoot (Dactylis glomerata L.) cultivars, cvs. Currie, Medly (both of Mediterranean origin) and Lutetia (of continental origin), and of tall fescue (Festuca arundinacea L.) cv. Centurion (Mediterranean) were grown in 60 cm-deep cylinders to eliminate the effect of differences of root depth on water availability whilst allowing severe drought to be imposed at a realistic rate. In both experiments, the cvs. were ranked similarly for plant survival, with high mortality for Centurion, low for the Mediterranean cocksfoots Currie and Medly, and intermediate for Lutetia. These differences could not be ascribed to water use during most of the drought period since water uptake and decrease in leaf extension were not significantly different between species and cultivars. However, resistant cvs. of cocksfoot were able to extract water for a longer period and at a lower soil water potential (s) than other cvs. The critical s at plant death was –3.8 and –3.6 MPa for Medly and Currie and –3.0-,–2.6 MPa for Lutetia and Centurion. Moreover, at a low soil water reserve (15–2%), membrane stability and water content were maintained for longer in enclosed immature leaf bases of cocksfoots cultivars, whereas the fescue Centurion exhibited accelerated lamina senescence and steady increase of membrane damage in surviving tissues. Therefore, it is proposed that the drought resistance of tall fescue in the field can mainly be ascribed to its ability to develop a deep root system. In cocksfoot, dehydration tolerance in surviving tissues and the ability of roots to extract water at low soil water potentials may, in addition to root depth, contribute significantly to plant survival under severe drought.  相似文献   
100.
Metal homeostasis is critical for the survival of living organisms, and metal transporters play central roles in maintaining metal homeostasis in the living cells. We have investigated the function of a metal transporter of the NRAMP family, AtNRAMP3, in Arabidopsis thaliana. A previous study showed that AtNRAMP3 expression is upregulated by iron (Fe) starvation and that AtNRAMP3 protein can transport Fe. In the present study, we used AtNRAMP3 promoter beta-glucoronidase (GUS) fusions to show that AtNRAMP3 is expressed in the vascular bundles of roots, stems, and leaves under Fe-sufficient conditions. This suggests a function in long-distance metal transport within the plant. Under Fe-starvation conditions, the GUS activity driven by the AtNRAMP3 promoter is upregulated without any change in the expression pattern. We analyze the impact of AtNRAMP3 disruption and overexpression on metal accumulation in plants. Under Fe-sufficient conditions, AtNRAMP3 overexpression or disruption does not lead to any change in the plant metal content. Upon Fe starvation, AtNRAMP3 disruption leads to increased accumulation of manganese (Mn) and zinc (Zn) in the roots, whereas AtNRAMP3 overexpression downregulates Mn accumulation. In addition, overexpression of AtNRAMP3 downregulates the expression of the primary Fe uptake transporter IRT1 and of the root ferric chelate reductase FRO2. Expression of AtNRAMP3::GFP fusion protein in onion cells or Arabidopsis protoplasts shows that AtNRAMP3 protein localizes to the vacuolar membrane. To account for the results presented, we propose that AtNRAMP3 influences metal accumulation and IRT1 and FRO2 gene expression by mobilizing vacuolar metal pools to the cytosol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号