首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11315篇
  免费   863篇
  国内免费   538篇
  2024年   12篇
  2023年   98篇
  2022年   237篇
  2021年   440篇
  2020年   326篇
  2019年   399篇
  2018年   445篇
  2017年   353篇
  2016年   480篇
  2015年   707篇
  2014年   755篇
  2013年   903篇
  2012年   1066篇
  2011年   930篇
  2010年   546篇
  2009年   507篇
  2008年   592篇
  2007年   519篇
  2006年   442篇
  2005年   386篇
  2004年   355篇
  2003年   294篇
  2002年   253篇
  2001年   201篇
  2000年   187篇
  1999年   169篇
  1998年   86篇
  1997年   97篇
  1996年   92篇
  1995年   76篇
  1994年   72篇
  1993年   72篇
  1992年   89篇
  1991年   87篇
  1990年   66篇
  1989年   53篇
  1988年   47篇
  1987年   48篇
  1986年   36篇
  1985年   39篇
  1984年   22篇
  1983年   21篇
  1982年   12篇
  1981年   12篇
  1979年   11篇
  1978年   15篇
  1975年   7篇
  1974年   7篇
  1972年   12篇
  1971年   6篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
201.
Long noncoding RNAs (lncRNAs) have been proven to exert important functions in the various biological processes of human cancers. It has been reported that lncRNA HNF1 homeobox A antisense RNA 1 (HNF1A‐AS1) was abnormally expressed and played a role in the initiation and development of various human cancers. In this study, we confirmed that the expression level of HNF1A‐AS1 was increased in glioma tissues and cells. Knockdown of HNF1A‐AS1 inhibited cell proliferation and promoted cell apoptosis in glioma. Then, we disclosed the downregulation of miR‐363‐3p in glioma tissues and cell lines. The interaction between HNF1A‐AS1 and miR‐363‐3p was identified in glioma cells. Furthermore, an inverse correlation between HNF1A‐AS1 and miR‐363‐3p was observed in glioma tissues. Afterwards, we recognized that MAP2K4 was a direct target of miR‐363‐3p. The expression of MAP2K4 was negatively correlated with miR‐363‐3p while positively related to HNF1A‐AS1 in glioma tissues. We also found the regulatory effect of HNF1A‐AS1 on the MAP2K4‐dependent JNK signaling pathway. All findings indicated that HNF1A‐AS1 induces the upregulation of MAP2K4 to activate the JNK signaling pathway to promote glioma cell growth by acting as a miR‐363‐3p sponge.  相似文献   
202.
203.
Li  Zhengtu  Li  Yinhu  Sun  Ruilin  Li  Shaoqiang  Chen  Lingdan  Zhan  Yangqing  Xie  Mingzhou  Yang  Jiasheng  Wang  Yanqun  Zhu  Airu  Gu  Guoping  Yu  Le  Li  Shuaicheng  Liu  Tingting  Chen  Zhaoming  Jian  Wenhua  Jiang  Qian  Su  Xiaofen  Gu  Weili  Chen  Liyan  Cheng  Jing  Zhao  Jincun  Lu  Wenju  Zheng  Jinping  Li  Shiyue  Zhong  Nanshan  Ye  Feng 《中国科学:生命科学英文版》2021,64(12):2129-2143
Science China Life Sciences - Prolonged viral RNA shedding and recurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in coronavirus disease 2019 (COVID-19) patients have been...  相似文献   
204.
Dear Editor, A series of studies had focused on the ecological stability of human microbiome (Lozupone et al.,2012;Faith et al.,2013;Moya and Ferrer,2016).Despite the continuous perturbation and the highly personalized composition within the human microbiome (Human Microbiome Project,2012),healthy adults stably maintain their microbial communities in terms of space and time (Faith et al.,2013;Moya and Ferrer,2016;Oh et al.,2016).This stability is proved to be critical for the well-being of human body (Lozupone et al.,2012).On the contrary,major shifts in microbial community composition are often related to diseases (Lynch and Pedersen,2016).  相似文献   
205.
NASH is a chronic liver disease that affects 3%–6% of individuals and requires urgent therapeutic developments. Isolating the key cell types in the liver is a necessary step towards understanding their function and roles in disease pathogenesis. However, traditional isolation methods through gradient centrifugation can only collect one or a few cell types simultaneously and pose technical difficulties when applied to NASH livers. Taking advantage of identified cell surface markers from liver single-cell RNAseq, here we established the combination of gradient centrifugation and antibody-based cell sorting techniques to isolate five key liver cell types (hepatocytes, endothelial cells, stellate cells, macrophages and other immune cells) from a single mouse liver. This method yielded high purity of each cell type from healthy and NASH livers. Our five-in-one protocol simultaneously isolates key liver cell types with high purity under normal and NASH conditions, enabling for systematic and accurate exploratory experiments such as RNA sequencing.  相似文献   
206.
Tumour-derived DNA found in the plasma of cancer patients provides the probability to detect somatic mutations from circulating cell-free DNA (cfDNA) in plasma samples. However, clonal hematopoiesis (CH) mutations affect the accuracy of liquid biopsy for cancer diagnosis and treatment. Here, we integrated landscape of CH mutations in 11,725 pan-cancer patients of Chinese and explored effects of CH on liquid biopsies in real-world. We first identified 5933 CHs based on panel sequencing of matched DNA of white blood cell and cfDNA on 301 genes for 5100 patients, in which CH number of patients had positive correlation with their diagnosis age. We observed that canonical genes related to CH, including DNMT3A, TET2, ASXL1, TP53, ATM, CHEK2 and SF3B1, were dominant in the Chinese cohort and 13.29% of CH mutations only appeared in the Chinese cohort compared with the Western cohort. Analysis of CH gene distribution bias indicated that CH tended to appear in genes with functions of tyrosine kinase regulation, PI3K-Akt signalling and TP53 activity, suggesting unfavourable effects of CH mutations in cancer patients. We further confirmed effect of driver genes carried by CH on somatic mutations in liquid biopsy of cancer patients. Forty-eight actionable somatic mutations in 17 driver genes were considered CH genes in 92 patients (1.80%) of the Chinese cohort, implying potential impacts of CH on clinical decision-making. Taken together, this study exhibits strong evidence that gene mutations from CH interfere accuracy of liquid biopsies using cfDNA in cancer diagnosis and treatment in real-world.  相似文献   
207.
208.
Alzheimer''s disease (AD) is a leading cause of dementia in elderly individuals and therapeutic options for AD are very limited. Over‐activation of N‐methyl‐D‐aspartate (NMDA) receptors, amyloid β (Aβ) aggregation, a decrease in cerebral blood flow (CBF), and downstream pathological events play important roles in the disease progression of AD. In the present study, MN‐08, a novel memantine nitrate, was found to inhibit Aβ accumulation, prevent neuronal and dendritic spine loss, and consequently attenuate cognitive deficits in 2‐month‐old APP/PS1 transgenic mice (for a 6‐month preventative course) and in the 8‐month‐old triple‐transgenic (3×Tg‐AD) mice (for a 4‐month therapeutic course). In vitro, MN‐08 could bind to and antagonize NMDA receptors, inhibit the calcium influx, and reverse the dysregulations of ERK and PI3K/Akt/GSK3β pathway, subsequently preventing glutamate‐induced neuronal loss. In addition, MN‐08 had favorable pharmacokinetics, blood‐brain barrier penetration, and safety profiles in rats and beagle dogs. These findings suggest that the novel memantine nitrate MN‐08 may be a useful therapeutic agent for AD.  相似文献   
209.
Although primary androgen deprivation therapy resulted in tumour regression, unfortunately, majority of prostate cancer progress to a lethal castration-resistant prostate cancer, finally die to metastasis. The mutual feedback between AKT and AR pathways plays a vital role in the progression and metastasis of prostate cancer. Therefore, the treatment of a single factor will eventually inevitably lead to failure. Therefore, better understanding of the molecular mechanisms underlying metastasis is critical to the development of new and more effective therapeutic agents. In this study, we created prostate cancer CWR22rv1 cells with the double knockout of Akt1 and Akt2 genes through CRISPR/Cas9 method to investigate the effect of Akt in metastasis of prostate cancer. It was found that knockout of Akt1/2 resulted in markedly reduced metastasis in vitro and in vivo, and appeared to interfere AR nuclear translocation through regulating downstream regulatory factor, FOXO proteins. It suggests that some downstream regulatory factors in the AKT and AR interaction network play a vital role in prostate cancer metastasis and are potential targeting molecules for prostate cancer metastasis treatment.  相似文献   
210.
Hepatocellular carcinoma (HCC) is one of the most aggressive tumours with marked fibrosis. Mycophenolate mofetil (MMF) was well-established to have antitumour and anti-fibrotic properties. To overcome the poor bioavailability of MMF, this study constructed two MMF nanosystems, MMF-LA@DSPE-PEG and MMF-LA@PEG-PLA, by covalently conjugating linoleic acid (LA) to MMF and then loading the conjugate into polymer materials, PEG5k-PLA8k and DSPE- PEG2k, respectively. Hepatocellular carcinoma cell lines and C57BL/6 xenograft model were used to examine the anti-HCC efficacy of nanoparticles (NPs), whereas NIH-3T3 fibroblasts and highly-fibrotic HCC models were used to explore the anti-fibrotic efficacy. Administration of NPs dramatically inhibited the proliferation of HCC cells and fibroblasts in vitro. Animal experiments revealed that MMF-LA@DSPE-PEG achieved significantly higher anti-HCC efficacy than free MMF and MMF-LA@PEG-PLA both in C57BL/6 HCC model and highly-fibrotic HCC models. Immunohistochemistry further confirmed that MMF-LA@DSPE-PEG dramatically reduced cancer-associated fibroblast (CAF) density in tumours, as the expression levels of alpha-smooth muscle actin (α-SMA), fibroblast activation protein (FAP) and collagen IV were significantly downregulated. In addition, we found the presence of CAF strongly correlated with increased HCC recurrence risk after liver transplantation. MMF-LA@DSPE-PEG might act as a rational therapeutic strategy in treating HCC and preventing post-transplant HCC recurrence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号