首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56254篇
  免费   4706篇
  国内免费   49篇
  61009篇
  2023年   200篇
  2022年   584篇
  2021年   1003篇
  2020年   556篇
  2019年   741篇
  2018年   1133篇
  2017年   889篇
  2016年   1566篇
  2015年   2585篇
  2014年   2876篇
  2013年   3369篇
  2012年   4343篇
  2011年   4154篇
  2010年   2638篇
  2009年   2320篇
  2008年   3339篇
  2007年   3100篇
  2006年   2834篇
  2005年   2558篇
  2004年   2502篇
  2003年   2226篇
  2002年   1897篇
  2001年   1645篇
  2000年   1536篇
  1999年   1218篇
  1998年   528篇
  1997年   468篇
  1996年   401篇
  1995年   393篇
  1994年   305篇
  1993年   298篇
  1992年   639篇
  1991年   515篇
  1990年   474篇
  1989年   479篇
  1988年   405篇
  1987年   390篇
  1986年   318篇
  1985年   329篇
  1984年   270篇
  1983年   224篇
  1982年   189篇
  1981年   162篇
  1980年   160篇
  1979年   220篇
  1978年   197篇
  1977年   179篇
  1976年   170篇
  1974年   196篇
  1972年   155篇
排序方式: 共有10000条查询结果,搜索用时 14 毫秒
691.
Although recent studies have shown that several pro-inflammatory proteins can be used as biomarkers for atherosclerosis, the mechanism of atherogenesis is unclear and little information is available regarding proteins involved in development of the disease. Atherosclerotic tissue samples were collected from patients in order to identify the proteins involved in atherogenesis. The protein expression profile of atherosclerosis patients was analysed using two-dimensional electrophoresis-based proteomics. Thirty-nine proteins were detected that were differentially expressed in the atherosclerotic aorta compared with the normal aorta. Twenty-seven of these proteins were identified in the MS-FIT database. They are involved in a number of biological processes, including calcium-mediated processes, migration of vascular smooth muscle cells, matrix metalloproteinase activation and regulation of pro-inflammatory cytokines. Confirmation of differential protein expression was performed by Western blot analysis. Potential applications of the results include the identification and characterization of signalling pathways involved in atherogenesis, and further exploration of the role of selected identified proteins in atherosclerosis.  相似文献   
692.
Bud sports are infrequent changes in phenotype affecting shoots of woody perennials but the molecular basis of these mutations has rarely been identified. In this report, we show that the bronze-coloured berries of the Malian cultivar, a documented bud sport of the wine grape Cabernet Sauvignon (Vitis vinifera L.), lack anthocyanins in the subepidermal cells compared to the red/black berried Cabernet Sauvignon in which both the epidermis and several subepidermal cell layers contain anthocyanin. The Malian phenotype is correlated with an alteration in the genome indicated by a reduction of hybridisation signal using a MYBA probe. In Shalistin, a white-berried bud sport of Malian, the red allele at the berry colour locus appears to have been deleted completely. These data suggest that Malian could be a L1/L2 periclinal chimera, which gave rise to Shalistin by an invasion of epidermal cells (L1) by the mutated subepidermal cells (L2). The red grape Pinot Noir has given rise to a number of pale coloured sports, although the provenance of the extant sports is not known. We show that a clone of Pinot Blanc (white-berried) does not have a deletion of the red allele of the same dimensions as that in Shalistin, though a small deletion is a likely explanation for the altered phenotype. However, the mechanism of deletion of the red allele of the berry colour locus is a possible means by which other red to white clonal mutations of grapevines have occurred.  相似文献   
693.
Bai C  Xu XL  Chan FY  Lee RT  Wang Y 《Eukaryotic cell》2006,5(2):238-247
The cell walls of microbial pathogens mediate physical interactions with host cells and hence play a key role in infection. Mannosyltransferases have been shown to determine the cell wall properties and virulence of the pathogenic fungus Candida albicans. We previously identified a C. albicans alpha-1,2-mannosyltransferase, Mnn5, for its novel ability to enhance iron usage in Saccharomyces cerevisiae. Here we have studied the enzymatic properties of purified Mnn5 and characterized its function in its natural host. Mnn5 catalyzes the transfer of mannose to both alpha-1,2- and alpha-1,6-mannobiose, and this activity requires Mn2+ as a cofactor and is regulated by the Fe2+ concentration. An mnn5Delta mutant showed a lowered ability to extend O-linked, and possibly also N-linked, mannans, hypersensitivity to cell wall-damaging agents, and a reduction of cell wall mannosylphosphate content, phenotypes typical of many fungal mannosyltransferase mutants. The mnn5Delta mutant also exhibited some unique defects, such as impaired hyphal growth on solid media and attenuated virulence in mice. An unanticipated phenotype was the mnn5Delta mutant's resistance to killing by the iron-chelating protein lactoferrin, rendering it the first protein found that mediates lactoferrin killing of C. albicans. In summary, MNN5 deletion impairs a wide range of cellular events, most likely due to its broad substrate specificity. Of particular interest was the observed role of iron in regulating the enzymatic activity, suggesting an underlying relationship between Mnn5 activity and cellular iron homeostasis.  相似文献   
694.
The activation of transglutaminase 2 (TG2), an enzyme that catalyzes post-translational modifications of proteins, has been implicated in apoptosis, cell adhesion and inflammatory responses. We previously reported that intracellular TG2 is activated under oxidative stress conditions, such as ultraviolet irradiation, ischemia-reperfusion, and hypoxia. In this study, we examined the effect of genotoxic stress on the intracellular activity of TG2 using doxorubicin which generates reactive oxygen species that lead to double-strand breakage of DNA. We demonstrated that doxorubicin elicits the persistent activation of TG2. Doxorubicin-induced TG2 activity was suppressed by treatment with caffeine at the early phase, N-acetylcysteine at the mid-phase, and EGTA at the late phase. However, treatment with a blocking antibody against TGFβ or toll-like receptor 2 showed no effect on TG2 activity, indicating that at least three different signaling pathways may be involved in the process of TG2 activation. In addition, using MEF cells defective for TG2 and cells overexpressing an activesite mutant of TG2, we revealed that doxorubicin-induced cell death is inversely correlated with TG2 activity. Our findings indicate that the persistent activation of TG2 by doxorubicin contributes to cell survival, suggesting that the mechanism-based inhibition of TG2 may be a novel strategy to prevent drug-resistance in doxorubicin treatment.  相似文献   
695.
696.
Although various nonviral transfection methods are available, cell toxicity, low transfection efficiency, and high cost remain hurdles for in vitro gene delivery in cultured primary endothelial cells. Recently, unprecedented transfection efficiency for primary endothelial cells has been achieved due to the newly developed nucleofection technology that uses a combination of novel electroporation condition and specific buffer components that stabilize the cells in the electrical field. Despite superior transfection efficiency and cell viability, high cost of the technology has discouraged cardiovascular researchers from liberally adopting this new technology. Here we report that a phosphate-buffered saline (PBS)-based nucleofection method can be used for efficient gene delivery into primary endothelial cells and other types of cells. Comparative analyses of transfection efficiency and cell viability for primary arterial, venous, microvascular, and lymphatic endothelial cells were performed using PBS. Compared with the commercial buffers, PBS can support equally remarkable nucleofection efficiency to both primary and nonprimary cells. Moreover, PBS-mediated nucleofection of small interfering RNA (siRNA) showed more than 90% knockdown of the expression of target genes in primary endothelial cells. We demonstrate that PBS can be an unprecedented economical alternative to the high-cost buffers or nucleofection of various primary and nonprimary cells.  相似文献   
697.
698.
699.
Fully mycoheterotrophic plants offer a fascinating system for studying phylogenetic associations and dynamics of symbiotic specificity between hosts and parasites. These plants frequently parasitize mutualistic mycorrhizal symbioses between fungi and trees. Corallorhiza striata is a fully mycoheterotrophic, North American orchid distributed from Mexico to Canada, but the full extent of its fungal associations and specificity is unknown. Plastid DNA (orchids) and ITS (fungi) were sequenced for 107 individuals from 42 populations across North America to identify C. striata mycobionts and test hypotheses on fungal host specificity. Four largely allopatric orchid plastid clades were recovered, and all fungal sequences were most similar to ectomycorrhizal Tomentella (Thelephoraceae), nearly all to T. fuscocinerea. Orchid-fungal gene trees were incongruent but nonindependent; orchid clades associated with divergent sets of fungi, with a clade of Californian orchids subspecialized toward a narrow Tomentella fuscocinerea clade. Both geography and orchid clades were important determinants of fungal association, following a geographic mosaic model of specificity on Tomentella fungi. These findings corroborate patterns described in other fully mycoheterotrophic orchids and monotropes, represent one of the most extensive plant-fungal genetic investigations of fully mycoheterotrophic plants, and have conservation implications for the >400 plant species engaging in this trophic strategy worldwide.  相似文献   
700.
The inulinase gene (INU1) from Kluyveromyces marxianus NCYC2887 strain was overexpressed by using GAL10 promotor in a △gal80 strain of Saccharomyces cerevisiae. The inulinase gene lacking the original signal sequence was fused in-frame to mating factor alpha signal sequence for secretory expression. Use of the △gal80 strain allowed the galactose-free induction of inulinase expression using a glucose-only medium. Shake flask cultivation in YPD medium produced 34.6 U/ml of the recombinant inulinase, which was approximately 13-fold higher than that produced by K. marxianus NCYC2887. It was found that the use of the △gal80 strain improved the expression of inulinase in the recombinant S. cerevisiae in both the aerobic and the anaerobic condition by about 2.9- and 1.7-fold, respectively. 5 L fed-batch fermentation using YPD medium was performed under aerobic condition with glucose feeding, which resulted in the inulinase production of 31.7 U/ml at OD600 of 67. Ethanol fermentation of dried powder of Jerusalem artichoke, an inulin-rich biomass, was also performed using the recombinant S. cerevisiae expressing INU1 and K. marxianus NCYC2887. Fermentation in a 5L scale fermentor was carried out at an aeration rate of 0.2 vvm, an agitation rate of 300 rpm, and the pH was controlled at 5.0. The temperature was maintained at 30degrees C and 37degrees C, respectively, for the recombinant S. cerevisiae and K. marxianus. The maximum productivities of ethanol were 59.0 and 53.5 g/L, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号