首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56257篇
  免费   4704篇
  国内免费   47篇
  2023年   200篇
  2022年   582篇
  2021年   1003篇
  2020年   556篇
  2019年   741篇
  2018年   1133篇
  2017年   889篇
  2016年   1566篇
  2015年   2585篇
  2014年   2876篇
  2013年   3369篇
  2012年   4343篇
  2011年   4154篇
  2010年   2638篇
  2009年   2320篇
  2008年   3339篇
  2007年   3100篇
  2006年   2834篇
  2005年   2558篇
  2004年   2502篇
  2003年   2226篇
  2002年   1897篇
  2001年   1645篇
  2000年   1536篇
  1999年   1218篇
  1998年   528篇
  1997年   468篇
  1996年   401篇
  1995年   393篇
  1994年   305篇
  1993年   298篇
  1992年   639篇
  1991年   515篇
  1990年   474篇
  1989年   479篇
  1988年   405篇
  1987年   390篇
  1986年   318篇
  1985年   329篇
  1984年   270篇
  1983年   224篇
  1982年   189篇
  1981年   162篇
  1980年   160篇
  1979年   220篇
  1978年   197篇
  1977年   179篇
  1976年   170篇
  1974年   196篇
  1972年   155篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
651.
652.
We report that an antibody engineered to express three Arg-Gly-Asp (RGD) repeats in the third complementarity-determining region of the heavy chain (antigenized antibody) efficiently inhibits the lysis of human erythroleukemia K-562 cells by natural killer (NK) cells. Synthetic peptides containing RGD did not inhibit. Inhibition was specific for the (RGD)3-containing loop and required simultaneous occupancy of the Fc receptor (CD16) on effector cells. The antigenized antibody inhibited other forms of cytotoxicity mediated by NK cells but not cytotoxicity mediated by major histocompatibility complex-restricted cytotoxic T lymphocytes (CTL). A three-dimensional model of the engineered antibody loop shows the structure and physicochemical characteristics probably required for the ligand activity. The results indicate that an RGD motif is involved in the productive interaction between NK and target cells. Moreover, they show that peptide expression in the hypervariable loops of an antibody molecule is an efficient procedure for stabilizing oligopeptides within a limited spectrum of tertiary structures. This is a new approach towards imparting ligand properties to antibody molecules and can be used to study the biological function and specificity of short peptide motifs, including those involved in cell adhesion.  相似文献   
653.
The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for normal growth and division of yeast cells. We report here the isolation of the yeast MKK1 and MKK2 (for mitogen-activated protein [MAP] kinase-kinase) genes which, when overexpressed, suppress the cell lysis defect of a temperature-sensitive pkc1 mutant. The MKK genes encode protein kinases most similar to the STE7 product of S. cerevisiae, the byr1 product of Schizosaccharomyces pombe, and vertebrate MAP kinase-kinases. Deletion of either MKK gene alone did not cause any apparent phenotypic defects, but deletion of both MKK1 and MKK2 resulted in a temperature-sensitive cell lysis defect that was suppressed by osmotic stabilizers. This phenotypic defect is similar to that associated with deletion of the BCK1 gene, which is thought to function in the pathway mediated by PCK1. The BCK1 gene also encodes a predicted protein kinase. Overexpression of MKK1 suppressed the growth defect caused by deletion of BCK1, whereas an activated allele of BCK1 (BCK1-20) did not suppress the defect of the mkk1 mkk2 double disruption. Furthermore, overexpression of MPK1, which encodes a protein kinase closely related to vertebrate MAP kinases, suppressed the defect of the mkk1 mkk2 double mutant. These results suggest that MKK1 and MKK2 function in a signal transduction pathway involving the protein kinases encoded by PKC1, BCK1, and MPK1. Genetic epistasis experiments indicated that the site of action for MKK1 and MKK2 is between BCK1 and MPK1.  相似文献   
654.
655.
The 5' ends of eukaryotic mRNAs are blocked by a cap structure, m7GpppX (where X is any nucleotide). The interaction of the cap structure with a cap-binding protein complex is required for efficient ribosome binding to the mRNA. In Saccharomyces cerevisiae, the cap-binding protein complex is a heterodimer composed of two subunits with molecular masses of 24 (eIF-4E, CDC33) and 150 (p150) kDa. p150 is presumed to be the yeast homolog of the p220 component of mammalian eIF-4F. In this report, we describe the isolation of yeast gene TIF4631, which encodes p150, and a closely related gene, TIF4632. TIF4631 and TIF4632 are 53% identical overall and 80% identical over a 320-amino-acid stretch in their carboxy-terminal halves. Both proteins contain sequences resembling the RNA recognition motif and auxiliary domains that are characteristic of a large family of RNA-binding proteins. tif4631-disrupted strains exhibited a slow-growth, cold-sensitive phenotype, while disruption of TIF4632 failed to show any phenotype under the conditions assayed. Double gene disruption engendered lethality, suggesting that the two genes are functionally homologous and demonstrating that at least one of them is essential for viability. These data are consistent with a critical role for the high-molecular-weight subunit of putative yeast eIF-4F in translation. Sequence comparison of TIF4631, TIF4632, and the human eIF-4F p220 subunit revealed significant stretches of homology. We have thus cloned two yeast homologs of mammalian p220.  相似文献   
656.
Cyclins and proto-oncogenes including c-myc have been implicated in eukaryotic cell cycle control. The role of cyclins in steroidal regulation of cell proliferation is unknown, but a role for c-myc has been suggested. This study investigated the relationship between regulation of T-47D breast cancer cell cycle progression, particularly by steroids and their antagonists, and changes in the levels of expression of these genes. Sequential induction of cyclins D1 (early G1 phase), D3, E, A (late G1-early S phase), and B1 (G2 phase) was observed following insulin stimulation of cell cycle progression in serum-free medium. Transient acceleration of G1-phase cells by progestin was also accompanied by rapid induction of cyclin D1, apparent within 2 h. This early induction of cyclin D1 and the ability of delayed administration of antiprogestin to antagonize progestin-induced increases in both cyclin D1 mRNA and the proportion of cells in S phase support a central role for cyclin D1 in mediating the mitogenic response in T-47D cells. Compatible with this hypothesis, antiestrogen treatment reduced the expression of cyclin D1 approximately 8 h before changes in cell cycle phase distribution accompanying growth inhibition. In the absence of progestin, antiprogestin treatment inhibited T-47D cell cycle progression but in contrast did not decrease cyclin D1 expression. Thus, changes in cyclin D1 gene expression are often, but not invariably, associated with changes in the rate of T-47D breast cancer cell cycle progression. However, both antiestrogen and antiprogestin depleted c-myc mRNA by > 80% within 2 h. These data suggest the involvement of both cyclin D1 and c-myc in the steroidal control of breast cancer cell cycle progression.  相似文献   
657.
658.
Mutagenesis analysis of a hepatitis delta virus genomic ribozyme.   总被引:5,自引:4,他引:1       下载免费PDF全文
We conducted extensive mutagenesis analysis on a hepatitis delta virus (HDV) genomic ribozyme to study the sequence specificity of certain region and to derive the secondary structure associated with the catalytic core. The results confirmed that the autocatalytic domain of HDV genomic RNA contained four base-pairing regions as predicted in the 'pseudo-knot' model [Perrotta & Been (1990) Nature 350, 434-436]. The size and sequence of one of the base-pairing regions, i. e. stem-and-loop, could be flexible. Helix 3 and the first basepair of helix 1 required specific sequence to retain self-cleavage activity. The structural requirement of helix 2 was less stringent than the other base-pairing regions. Moreover, the size of helix 1 affected self-cleavage whereas the length of hinge could be variable even though the first three residues of hinge had stringent sequence requirement.  相似文献   
659.
660.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号