首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2031篇
  免费   171篇
  国内免费   2篇
  2204篇
  2022年   19篇
  2021年   27篇
  2020年   18篇
  2019年   21篇
  2018年   22篇
  2017年   28篇
  2016年   58篇
  2015年   99篇
  2014年   106篇
  2013年   146篇
  2012年   167篇
  2011年   147篇
  2010年   104篇
  2009年   82篇
  2008年   115篇
  2007年   91篇
  2006年   83篇
  2005年   78篇
  2004年   79篇
  2003年   67篇
  2002年   57篇
  2001年   55篇
  2000年   49篇
  1999年   37篇
  1998年   21篇
  1997年   21篇
  1996年   26篇
  1995年   11篇
  1994年   24篇
  1993年   12篇
  1992年   24篇
  1991年   28篇
  1990年   19篇
  1989年   12篇
  1988年   18篇
  1987年   17篇
  1986年   17篇
  1985年   15篇
  1984年   9篇
  1983年   16篇
  1982年   13篇
  1981年   11篇
  1980年   11篇
  1979年   20篇
  1978年   10篇
  1976年   19篇
  1975年   12篇
  1974年   6篇
  1973年   8篇
  1970年   8篇
排序方式: 共有2204条查询结果,搜索用时 15 毫秒
81.
Spontaneous exocytosis of single synaptic vesicles generates miniature synaptic currents, which provide a window into the dynamic control of synaptic transmission. To resolve the impact of different factors on the dynamics and variability of synaptic transmission, we recorded miniature excitatory postsynaptic currents (mEPSCs) from cocultures of mouse hippocampal neurons with HEK cells expressing the postsynaptic proteins GluA2, neuroligin 1, PSD-95, and stargazin. Synapses between neurons and these heterologous cells have a molecularly defined postsynaptic apparatus, while the compact morphology of HEK cells eliminates the distorting effect of dendritic filtering. HEK cells in coculture produced mEPSCs with a higher frequency, larger amplitude, and more rapid rise and decay than neurons from the same culture. However, mEPSC area indicated that nerve terminals in synapses with both neurons and HEK cells release similar populations of vesicles. Modulation by the glutamate receptor ligand aniracetam revealed receptor contributions to mEPSC shape. Dendritic cable effects account for the slower mEPSC rise in neurons, whereas the slower decay also depends on other factors. Lastly, expression of synaptobrevin transmembrane domain mutants in neurons slowed the rise of HEK cell mEPSCs, thus revealing the impact of synaptic fusion pores. In summary, we show that cocultures of neurons with heterologous cells provide a geometrically simplified and molecularly defined system to investigate the time course of synaptic transmission and to resolve the contribution of vesicles, fusion pores, dendrites, and receptors to this process.  相似文献   
82.
Lack of Sonic hedgehog (Shh) signaling, mediated by the Gli proteins, leads to severe pulmonary hypoplasia. However, the precise role of Gli genes in lung development is not well established. We show Shh signaling prevents Gli3 proteolysis to generate its repressor forms (Gli3R) in the developing murine lung. In Shh(-/-) or cyclopamine-treated wild-type (WT) lung, we found that Gli3R level is elevated, and this upregulation appears to contribute to defects in proliferation and differentiation observed in the Shh(-/-) mesenchyme, where Gli3 is normally expressed. In agreement, we found Shh(-/-);Gli3(-/-) lungs exhibit enhanced growth potential. Vasculogenesis is also enhanced; in contrast, bronchial myogenesis remains absent in Shh(-/-);Gli3(-/-) compared with Shh(-/-) lungs. Genes upregulated in Shh(-/-);Gli3(-/-) relative to Shh(-/-) lung include Wnt2 and, surprisingly, Foxf1 whose expression has been reported to be Shh-dependent. Cyclins D1, D2, and D3 antibody labelings also reveal distinct expression patterns in the normal and mutant lungs. We found significant repression of Tbx2 and Tbx3, both linked to inhibition of cellular senescence, in Shh(-/-) and partial derepression in Shh(-/-); Gli3(-/-) lungs, while Tbx4 and Tbx5 expressions are less affected in the mutants. Our findings shed light on the role of Shh signaling on Gli3 processing in lung growth and differentiation by regulating several critical genes.  相似文献   
83.
Rong R  Slupska MM  Chiang JH  Miller JH 《Gene》2004,336(1):73-80
An effective DNA replacement system has been established for engineering large fragment insertions into the chromosome of Escherichia coli. The DNA replacement plasmid, pHybrid I, was first constructed based on the bacterial artificial chromosome (BAC) vector. Two fragments of the E. coli genome, 5.5 and 6.5 kb in length, were introduced into the vector for homologous recombination. In addition to the chloramphenicol gene, a second gene neo was introduced for double marker screening for recombinant clones. By shot-gun cloning and homologous recombination techniques, using our new recombinant vector (pHybrid I), a 20-kb fragment from Lactococcus lactis genomic DNA has been successfully integrated into the chromosome of the E. coli strain J93-140. Plating tests and PCR amplification indicated that the integration remained stable after many generations in cell culture. This system will be especially useful for the chromosome engineering of large heterologous fragment insertions, which is necessary for pathway engineering.  相似文献   
84.
Toxoplasma gondii is an opportunistic, zoonotic pathogen with a worldwide distribution. There are large variations in the seroprevalence of T. gondii infection in different regions of the world. Although toxoplasmosis became a notifiable communicable disease in Taiwan in 2007, little is known about its epidemiology among the general population. This cross-sectional study aimed to survey the seroprevalence of T. gondii infection and its risk factors among healthy blood donors in Taiwan. Through collaborating with the Taiwan Blood Services Foundation, a total of 1,783 healthy blood donors from all six-branch blood service centers participated in this study. The blood samples were tested for the presence of T. gondii antibodies and DNA using enzyme immunoassays and real-time PCR, respectively. Structured questionnaires were used to gather information on risk factors for T. gondii infection. Of the 1,783 participants, 166 (9.3%) tested positive for anti-Toxoplasma IgG, while 5 (0.28%) tested positive for anti-Toxoplasma IgM. The five IgM positive donors had high avidity antibodies suggestive of past infection. No active parasitemia was detected by real-time PCR assays. Multivariate logistic regression showed that undercooked pork meat consumption (adjusted odds ratio [OR] = 2.9; 95% confidence interval [CI]: 1.3–6.5), raw mussels consumption (adjusted OR = 5.3; 95% CI: 1.5–19.1), having a cat in the household (adjusted OR = 2.0; 95% CI: 1.2–3.2), a lower education level (adjusted OR = 1.6; 95% CI: 1.1–2.3), and donation place in eastern Taiwan (adjusted OR = 2.5; 95% CI: 1.6–3.9) were independent risk factors for Toxoplasma seropositivity. These findings provide information on the seroprevalence and epidemiology of T. gondii infection among healthy blood donors in Taiwan.  相似文献   
85.
86.
Fructose-1,6-bisphosphatase (FBPase) is targeted to the vacuole for degradation when Saccharomyces cerevisiae are shifted from low to high glucose. Before vacuolar import, however, FBPase is sequestered inside a novel type of vesicle, the vacuole import and degradation (Vid) vesicles. Here, we reconstitute import of FBPase into isolated Vid vesicles. FBPase sequestration into Vid vesicles required ATP and cytosol, but was inhibited if ATP binding proteins were depleted from the cytosol. The heat shock protein Ssa2p was identified as one of the ATP binding proteins involved in FBPase import. A Deltassa2 strain exhibited a significant decrease in the rate of FBPase degradation in vivo as compared with Deltassa1, Deltassa3, or Deltassa4 strains. Likewise, in vitro import was impaired for the Deltassa2 strain, but not for the other Deltassa strains. The cytosol was identified as the site of the Deltassa2 defect; Deltassa2 cytosol did not stimulate FBPase import into import competent Vid vesicles, but wild-type cytosol supported FBPase import into competent Deltassa2 vesicles. The addition of purified recombinant Ssa2p stimulated FBPase import into Deltassa2 Vid vesicles, providing Deltassa2 cytosol was present. Thus, Ssa2p, as well as other undefined cytosolic proteins are required for the import of FBPase into vesicles.  相似文献   
87.
88.
89.
Central mechanisms by which specific motor programs are selected to achieve meaningful behaviors are not well understood. Using electrophysiological recordings from pharyngeal nerves upon central activation of neurotransmitter-expressing cells, we show that distinct neuronal ensembles can regulate different feeding motor programs. In behavioral and electrophysiological experiments, activation of 20 neurons in the brain expressing the neuropeptide hugin, a homolog of mammalian neuromedin U, simultaneously suppressed the motor program for food intake while inducing the motor program for locomotion. Decreasing hugin neuropeptide levels in the neurons by RNAi prevented this action. Reducing the level of hugin neuronal activity alone did not have any effect on feeding or locomotion motor programs. Furthermore, use of promoter-specific constructs that labeled subsets of hugin neurons demonstrated that initiation of locomotion can be separated from modulation of its motor pattern. These results provide insights into a neural mechanism of how opposing motor programs can be selected in order to coordinate feeding and locomotive behaviors.  相似文献   
90.
Noisy galvanic vestibular stimulation has been associated with numerous cognitive and behavioural effects, such as enhancement of visual memory in healthy individuals, improvement of visual deficits in stroke patients, as well as possibly improvement of motor function in Parkinson’s disease; yet, the mechanism of action is unclear. Since Parkinson’s and other neuropsychiatric diseases are characterized by maladaptive dynamics of brain rhythms, we investigated whether noisy galvanic vestibular stimulation was associated with measurable changes in EEG oscillatory rhythms within theta (4–7.5 Hz), low alpha (8–10 Hz), high alpha (10.5–12 Hz), beta (13–30 Hz) and gamma (31–50 Hz) bands. We recorded the EEG while simultaneously delivering noisy bilateral, bipolar stimulation at varying intensities of imperceptible currents – at 10, 26, 42, 58, 74 and 90% of sensory threshold – to ten neurologically healthy subjects. Using standard spectral analysis, we investigated the transient aftereffects of noisy stimulation on rhythms. Subsequently, using robust artifact rejection techniques and the Least Absolute Shrinkage Selection Operator regression and cross-validation, we assessed the combinations of channels and power spectral features within each EEG frequency band that were linearly related with stimulus intensity. We show that noisy galvanic vestibular stimulation predominantly leads to a mild suppression of gamma power in lateral regions immediately after stimulation, followed by delayed increase in beta and gamma power in frontal regions approximately 20–25 s after stimulation ceased. Ongoing changes in the power of each oscillatory band throughout frontal, central/parietal, occipital and bilateral electrodes predicted the intensity of galvanic vestibular stimulation in a stimulus-dependent manner, demonstrating linear effects of stimulation on brain rhythms. We propose that modulation of neural oscillations is a potential mechanism for the previously-described cognitive and motor effects of vestibular stimulation, and noisy galvanic vestibular stimulation may provide an additional non-invasive means for neuromodulation of functional brain networks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号