首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2012年   3篇
  2011年   6篇
  2010年   1篇
  2005年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
11.
12.
Hsu JB  Bretaña NA  Lee TY  Huang HD 《PloS one》2011,6(11):e27567
Regulation of pre-mRNA splicing is achieved through the interaction of RNA sequence elements and a variety of RNA-splicing related proteins (splicing factors). The splicing machinery in humans is not yet fully elucidated, partly because splicing factors in humans have not been exhaustively identified. Furthermore, experimental methods for splicing factor identification are time-consuming and lab-intensive. Although many computational methods have been proposed for the identification of RNA-binding proteins, there exists no development that focuses on the identification of RNA-splicing related proteins so far. Therefore, we are motivated to design a method that focuses on the identification of human splicing factors using experimentally verified splicing factors. The investigation of amino acid composition reveals that there are remarkable differences between splicing factors and non-splicing proteins. A support vector machine (SVM) is utilized to construct a predictive model, and the five-fold cross-validation evaluation indicates that the SVM model trained with amino acid composition could provide a promising accuracy (80.22%). Another basic feature, amino acid dipeptide composition, is also examined to yield a similar predictive performance to amino acid composition. In addition, this work presents that the incorporation of evolutionary information and domain information could improve the predictive performance. The constructed models have been demonstrated to effectively classify (73.65% accuracy) an independent data set of human splicing factors. The result of independent testing indicates that in silico identification could be a feasible means of conducting preliminary analyses of splicing factors and significantly reducing the number of potential targets that require further in vivo or in vitro confirmation.  相似文献   
13.
14.
SUMMARY: Transporters are proteins that are involved in the movement of ions or molecules across biological membranes. Currently, our knowledge about the functions of transporters is limited due to the paucity of their 3D structures. Hence, computational techniques are necessary to annotate the functions of transporters. In this work, we focused on an important functional aspect of transporters, namely annotation of targets for transport proteins. We have systematically analyzed four major classes of transporters with different transporter targets: (i) electron, (ii) protein/mRNA, (iii) ion and (iv) others, using amino acid properties. We have developed a radial basis function network-based method for predicting transport targets with amino acid properties and position specific scoring matrix profiles. Our method showed a 10-fold cross-validation accuracy of 90.1, 80.1, 70.3 and 82.3% for electron transporters, protein/mRNA transporters, ion transporters and others, respectively, in a dataset of 543 transporters. We have also evaluated the performance of the method with an independent dataset of 108 proteins and we obtained similar accuracy. We suggest that our method could be an effective tool for functional annotation of transport proteins. AVAILABILITY: http://rbf.bioinfo.tw/~sachen/ttrbf.html  相似文献   
15.

Background

Protein ubiquitination catalyzed by E3 ubiquitin ligases play important modulatory roles in various biological processes. With the emergence of high-throughput mass spectrometry technology, the proteomics research community embraced the development of numerous experimental methods for the determination of ubiquitination sites. The result is an accumulation of ubiquitinome data, coupled with a lack of available resources for investigating the regulatory networks among E3 ligases and ubiquitinated proteins. In this study, by integrating existing ubiquitinome data, experimentally validated E3 ligases and established protein-protein interactions, we have devised a strategy to construct a comprehensive map of protein ubiquitination networks.

Results

In total, 41,392 experimentally verified ubiquitination sites from 12,786 ubiquitinated proteins of humans have been obtained for this study. Additional 494 E3 ligases along with 1220 functional annotations and 28588 protein domains were manually curated. To characterize the regulatory networks among E3 ligases and ubiquitinated proteins, a well-established network viewer was utilized for the exploration of ubiquitination networks from 40892 protein-protein interactions. The effectiveness of the proposed approach was demonstrated in a case study examining E3 ligases involved in the ubiquitination of tumor suppressor p53. In addition to Mdm2, a known regulator of p53, the investigation also revealed other potential E3 ligases that may participate in the ubiquitination of p53.

Conclusion

Aside from the ability to facilitate comprehensive investigations of protein ubiquitination networks, by integrating information regarding protein-protein interactions and substrate specificities, the proposed method could discover potential E3 ligases for ubiquitinated proteins. Our strategy presents an efficient means for the preliminary screen of ubiquitination networks and overcomes the challenge as a result of limited knowledge about E3 ligase-regulated ubiquitination.
  相似文献   
16.

Background

The conjugation of ubiquitin to a substrate protein (protein ubiquitylation), which involves a sequential process – E1 activation, E2 conjugation and E3 ligation, is crucial to the regulation of protein function and activity in eukaryotes. This ubiquitin-conjugation process typically binds the last amino acid of ubiquitin (glycine 76) to a lysine residue of a target protein. The high-throughput of mass spectrometry-based proteomics has stimulated a large-scale identification of ubiquitin-conjugated peptides. Hence, a new web resource, UbiSite, was developed to identify ubiquitin-conjugation site on lysines based on large-scale proteome dataset.

Results

Given a total of 37,647 ubiquitin-conjugated proteins, including 128026 ubiquitylated peptides, obtained from various resources, this study carries out a large-scale investigation on ubiquitin-conjugation sites based on sequenced and structural characteristics. A TwoSampleLogo reveals that a significant depletion of histidine (H), arginine (R) and cysteine (C) residues around ubiquitylation sites may impact the conjugation of ubiquitins in closed three-dimensional environments. Based on the large-scale ubiquitylation dataset, a motif discovery tool, MDDLogo, has been adopted to characterize the potential substrate motifs for ubiquitin conjugation. Not only are single features such as amino acid composition (AAC), positional weighted matrix (PWM), position-specific scoring matrix (PSSM) and solvent-accessible surface area (SASA) considered, but also the effectiveness of incorporating MDDLogo-identified substrate motifs into a two-layered prediction model is taken into account. Evaluation by five-fold cross-validation showed that PSSM is the best feature in discriminating between ubiquitylation and non-ubiquitylation sites, based on support vector machine (SVM). Additionally, the two-layered SVM model integrating MDDLogo-identified substrate motifs could obtain a promising accuracy and the Matthews Correlation Coefficient (MCC) at 81.06 % and 0.586, respectively. Furthermore, the independent testing showed that the two-layered SVM model could outperform other prediction tools, reaching at 85.10 % sensitivity, 69.69 % specificity, 73.69 % accuracy and the 0.483 of MCC value.

Conclusion

The independent testing result indicated the effectiveness of incorporating MDDLogo-identified motifs into the prediction of ubiquitylation sites. In order to provide meaningful assistance to researchers interested in large-scale ubiquitinome data, the two-layered SVM model has been implemented onto a web-based system (UbiSite), which is freely available at http://csb.cse.yzu.edu.tw/UbiSite/. Two cases given in the UbiSite provide a demonstration of effective identification of ubiquitylation sites with reference to substrate motifs.
  相似文献   
17.

Background

Protein carbonylation, an irreversible and non-enzymatic post-translational modification (PTM), is often used as a marker of oxidative stress. When reactive oxygen species (ROS) oxidized the amino acid side chains, carbonyl (CO) groups are produced especially on Lysine (K), Arginine (R), Threonine (T), and Proline (P). Nevertheless, due to the lack of information about the carbonylated substrate specificity, we were encouraged to develop a systematic method for a comprehensive investigation of protein carbonylation sites.

Results

After the removal of redundant data from multipe carbonylation-related articles, totally 226 carbonylated proteins in human are regarded as training dataset, which consisted of 307, 126, 128, and 129 carbonylation sites for K, R, T and P residues, respectively. To identify the useful features in predicting carbonylation sites, the linear amino acid sequence was adopted not only to build up the predictive model from training dataset, but also to compare the effectiveness of prediction with other types of features including amino acid composition (AAC), amino acid pair composition (AAPC), position-specific scoring matrix (PSSM), positional weighted matrix (PWM), solvent-accessible surface area (ASA), and physicochemical properties. The investigation of position-specific amino acid composition revealed that the positively charged amino acids (K and R) are remarkably enriched surrounding the carbonylated sites, which may play a functional role in discriminating between carbonylation and non-carbonylation sites. A variety of predictive models were built using various features and three different machine learning methods. Based on the evaluation by five-fold cross-validation, the models trained with PWM feature could provide better sensitivity in the positive training dataset, while the models trained with AAindex feature achieved higher specificity in the negative training dataset. Additionally, the model trained using hybrid features, including PWM, AAC and AAindex, obtained best MCC values of 0.432, 0.472, 0.443 and 0.467 on K, R, T and P residues, respectively.

Conclusion

When comparing to an existing prediction tool, the selected models trained with hybrid features provided a promising accuracy on an independent testing dataset. In short, this work not only characterized the carbonylated substrate preference, but also demonstrated that the proposed method could provide a feasible means for accelerating preliminary discovery of protein carbonylation.
  相似文献   
18.
19.

Background

Carbonylation, which takes place through oxidation of reactive oxygen species (ROS) on specific residues, is an irreversibly oxidative modification of proteins. It has been reported that the carbonylation is related to a number of metabolic or aging diseases including diabetes, chronic lung disease, Parkinson’s disease, and Alzheimer’s disease. Due to the lack of computational methods dedicated to exploring motif signatures of protein carbonylation sites, we were motivated to exploit an iterative statistical method to characterize and identify carbonylated sites with motif signatures.

Results

By manually curating experimental data from research articles, we obtained 332, 144, 135, and 140 verified substrate sites for K (lysine), R (arginine), T (threonine), and P (proline) residues, respectively, from 241 carbonylated proteins. In order to examine the informative attributes for classifying between carbonylated and non-carbonylated sites, multifarious features including composition of twenty amino acids (AAC), composition of amino acid pairs (AAPC), position-specific scoring matrix (PSSM), and positional weighted matrix (PWM) were investigated in this study. Additionally, in an attempt to explore the motif signatures of carbonylation sites, an iterative statistical method was adopted to detect statistically significant dependencies of amino acid compositions between specific positions around substrate sites. Profile hidden Markov model (HMM) was then utilized to train a predictive model from each motif signature. Moreover, based on the method of support vector machine (SVM), we adopted it to construct an integrative model by combining the values of bit scores obtained from profile HMMs. The combinatorial model could provide an enhanced performance with evenly predictive sensitivity and specificity in the evaluation of cross-validation and independent testing.

Conclusion

This study provides a new scheme for exploring potential motif signatures at substrate sites of protein carbonylation. The usefulness of the revealed motifs in the identification of carbonylated sites is demonstrated by their effective performance in cross-validation and independent testing. Finally, these substrate motifs were adopted to build an available online resource (MDD-Carb, http://csb.cse.yzu.edu.tw/MDDCarb/) and are also anticipated to facilitate the study of large-scale carbonylated proteomes.
  相似文献   
20.

Background

Massively parallel sequencing technology is revolutionizing approaches to genomic and genetic research. Since its advent, the scale and efficiency of Next-Generation Sequencing (NGS) has rapidly improved. In spite of this success, sequencing genomes or genomic regions with extremely biased base composition is still a great challenge to the currently available NGS platforms. The genomes of some important pathogenic organisms like Plasmodium falciparum (high AT content) and Mycobacterium tuberculosis (high GC content) display extremes of base composition. The standard library preparation procedures that employ PCR amplification have been shown to cause uneven read coverage particularly across AT and GC rich regions, leading to problems in genome assembly and variation analyses. Alternative library-preparation approaches that omit PCR amplification require large quantities of starting material and hence are not suitable for small amounts of DNA/RNA such as those from clinical isolates. We have developed and optimized library-preparation procedures suitable for low quantity starting material and tolerant to extremely high AT content sequences.

Results

We have used our optimized conditions in parallel with standard methods to prepare Illumina sequencing libraries from a non-clinical and a clinical isolate (containing ~53% host contamination). By analyzing and comparing the quality of sequence data generated, we show that our optimized conditions that involve a PCR additive (TMAC), produces amplified libraries with improved coverage of extremely AT-rich regions and reduced bias toward GC neutral templates.

Conclusion

We have developed a robust and optimized Next-Generation Sequencing library amplification method suitable for extremely AT-rich genomes. The new amplification conditions significantly reduce bias and retain the complexity of either extremes of base composition. This development will greatly benefit sequencing clinical samples that often require amplification due to low mass of DNA starting material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号