全文获取类型
收费全文 | 499篇 |
免费 | 43篇 |
国内免费 | 2篇 |
专业分类
544篇 |
出版年
2022年 | 3篇 |
2021年 | 11篇 |
2020年 | 4篇 |
2019年 | 5篇 |
2018年 | 9篇 |
2017年 | 9篇 |
2016年 | 14篇 |
2015年 | 26篇 |
2014年 | 23篇 |
2013年 | 35篇 |
2012年 | 36篇 |
2011年 | 34篇 |
2010年 | 18篇 |
2009年 | 11篇 |
2008年 | 27篇 |
2007年 | 23篇 |
2006年 | 13篇 |
2005年 | 13篇 |
2004年 | 16篇 |
2003年 | 13篇 |
2002年 | 9篇 |
2001年 | 9篇 |
2000年 | 9篇 |
1999年 | 7篇 |
1998年 | 10篇 |
1997年 | 5篇 |
1996年 | 4篇 |
1995年 | 4篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 4篇 |
1990年 | 5篇 |
1989年 | 8篇 |
1988年 | 6篇 |
1987年 | 9篇 |
1986年 | 5篇 |
1985年 | 7篇 |
1984年 | 6篇 |
1983年 | 6篇 |
1982年 | 8篇 |
1979年 | 6篇 |
1977年 | 5篇 |
1976年 | 3篇 |
1975年 | 7篇 |
1974年 | 10篇 |
1973年 | 7篇 |
1972年 | 3篇 |
1968年 | 3篇 |
1922年 | 2篇 |
1921年 | 2篇 |
排序方式: 共有544条查询结果,搜索用时 15 毫秒
11.
Nishikawa K Biewener AA Aerts P Ahn AN Chiel HJ Daley MA Daniel TL Full RJ Hale ME Hedrick TL Lappin AK Nichols TR Quinn RD Satterlie RA Szymik B 《Integrative and comparative biology》2007,47(1):16-54
Neuromechanics seeks to understand how muscles, sense organs,motor pattern generators, and brain interact to produce coordinatedmovement, not only in complex terrain but also when confrontedwith unexpected perturbations. Applications of neuromechanicsinclude ameliorating human health problems (including prosthesisdesign and restoration of movement following brain or spinalcord injury), as well as the design, actuation and control ofmobile robots. In animals, coordinated movement emerges fromthe interplay among descending output from the central nervoussystem, sensory input from body and environment, muscle dynamics,and the emergent dynamics of the whole animal. The inevitablecoupling between neural information processing and the emergentmechanical behavior of animals is a central theme of neuromechanics.Fundamentally, motor control involves a series of transformationsof information, from brain and spinal cord to muscles to body,and back to brain. The control problem revolves around the specifictransfer functions that describe each transformation. The transferfunctions depend on the rules of organization and operationthat determine the dynamic behavior of each subsystem (i.e.,central processing, force generation, emergent dynamics, andsensory processing). In this review, we (1) consider the contributionsof muscles, (2) sensory processing, and (3) central networksto motor control, (4) provide examples to illustrate the interplayamong brain, muscles, sense organs and the environment in thecontrol of movement, and (5) describe advances in both roboticsand neuromechanics that have emerged from application of biologicalprinciples in robotic design. Taken together, these studiesdemonstrate that (1) intrinsic properties of muscle contributeto dynamic stability and control of movement, particularly immediatelyafter perturbations; (2) proprioceptive feedback reinforcesthese intrinsic self-stabilizing properties of muscle; (3) controlsystems must contend with inevitable time delays that can simplifyor complicate control; and (4) like most animals under a varietyof circumstances, some robots use a trial and error processto tune central feedforward control to emergent body dynamics. 相似文献
12.
中国的炭疽杆菌DNA分型及其地理分布 总被引:6,自引:1,他引:6
炭疽广泛分布于中国各地,特别是西部地区,并经常造成人畜疾病,在一项合作研究中,用多位点VNTR分析(MLVA)对从1952-1998年自中国主要地理流行区域分离的病人,病畜和土壤等来源的炭疽杆菌进行了基因分型,MLVA分析结果揭示了21种新的基因型,其等位基因组合在以前世界范围分离物的研究中未曾发现,此外,分离物的分群显示,A3b组是地理上最广泛分布的基因组,说明该组可能是中国的“地方流行株”。而来自古丝绸之路重要贸易中心新疆的大量分离株其基因型特别分散。 相似文献
13.
Steve Horvath Abu NM Nazmul-Hossain Rodney PE Pollard Frans GM Kroese Arjan Vissink Cees GM Kallenberg Fred KL Spijkervet Hendrika Bootsma Sara A Michie Sven U Gorr Ammon B Peck Chaochao Cai Hui Zhou David TW Wong 《Arthritis research & therapy》2012,14(6):1-13
Bone tissue has an exceptional quality to regenerate to native tissue in response to injury. However, the fracture repair process requires mechanical stability or a viable biological microenvironment or both to ensure successful healing to native tissue. An improved understanding of the molecular and cellular events that occur during bone repair and remodeling has led to the development of biologic agents that can augment the biological microenvironment and enhance bone repair. Orthobiologics, including stem cells, osteoinductive growth factors, osteoconductive matrices, and anabolic agents, are available clinically for accelerating fracture repair and treatment of compromised bone repair situations like delayed unions and nonunions. Preclinical and clinical studies using biologic agents like recombinant bone morphogenetic proteins have demonstrated an efficacy similar or better than that of autologous bone graft in acute fracture healing. A lack of standardized outcome measures for comparison of biologic agents in clinical fracture repair trials, frequent off-label use, and a limited understanding of the biological activity of these agents at the bone repair site have limited their efficacy in clinical applications. 相似文献
14.
15.
In the early stages of infection, gaining control of the cellular protein synthesis machinery including its ribosomes is the ultimate combat objective for a virus. To successfully replicate, viruses unequivocally need to usurp and redeploy this machinery for translation of their own mRNA. In response, the host triggers global shutdown of translation while paradoxically allowing swift synthesis of antiviral proteins as a strategy to limit collateral damage. This fundamental conflict at the level of translational control defines the outcome of infection. As part of this special issue on molecular mechanisms of early virus–host cell interactions, we review the current state of knowledge regarding translational control during viral infection with specific emphasis on protein kinase RNA-activated and mammalian target of rapamycin-mediated mechanisms. We also describe recent technological advances that will allow unprecedented insight into how viruses and host cells battle for ribosomes. 相似文献
16.
Progression through the eukaryotic cell cycle is characterized by specific transitions, where cells move irreversibly from stage i−1 of the cycle into stage i. These irreversible cell cycle transitions are regulated by underlying bistable switches, which share some common features. An inhibitory protein stalls progression, and an activatory protein promotes progression. The inhibitor and activator are locked in a double-negative feedback loop, creating a one-way toggle switch that guarantees an irreversible commitment to move forward through the cell cycle, and it opposes regression from stage i to stage i−1. In many cases, the activator is an enzyme that modifies the inhibitor in multiple steps, whereas the hypo-modified inhibitor binds strongly to the activator and resists its enzymatic activity. These interactions are the basis of a reaction motif that provides a simple and generic account of many characteristic properties of cell cycle transitions. To demonstrate this assertion, we apply the motif in detail to the G1/S transition in budding yeast and to the mitotic checkpoint in mammalian cells. Variations of the motif might support irreversible cellular decision-making in other contexts. 相似文献
17.
Typically cells replicate their genome only once per division cycle, but under some circumstances, both natural and unnatural, cells synthesize an overabundance of DNA, either in a disorganized manner (“overreplication”) or by a systematic doubling of chromosome number (“endoreplication”). These variations on the theme of DNA replication and division have been studied in strains of fission yeast, Schizosaccharomyces pombe, carrying mutations that interfere with the function of mitotic cyclin-dependent kinase (Cdk1:Cdc13) without impeding the roles of DNA-replication loading factor (Cdc18) and S-phase cyclin-dependent kinase (Cdk1:Cig2). Some of these mutations support endoreplication, and some overreplication. In this paper, we propose a dynamical model of the interactions among the proteins governing DNA replication and cell division in fission yeast. By computational simulations of the mathematical model, we account for the observed phenotypes of these re-replicating mutants, and by theoretical analysis of the dynamical system, we provide insight into the molecular distinctions between overreplicating and endoreplicating cells. In the case of induced overproduction of regulatory proteins, our model predicts that cells first switch from normal mitotic cell cycles to growth-controlled endoreplication, and ultimately to disorganized overreplication, parallel to the slow increase of protein to very high levels. 相似文献
18.
Claudia Azucena Palafox Sánchez Minoru Satoh Edward KL Chan Wendy C Carcamo José Francisco Muñoz Valle Gerardo Orozco Barocio Edith Oregon Romero Rosa Elena Navarro Hernández Mario Salazar Páramo Antonio Cabral Castañeda Mónica Vázquez del Mercado 《Arthritis research & therapy》2009,11(1):1-12
Introduction
In rheumatoid arthritis (RA), synovial fluid (SF) contains a large number of neutrophils that contribute to the inflammation and destruction of the joints. The SF also contains granulocyte-macrophage colony-stimulating factor (GM-CSF), which sustains viability of neutrophils and activates their functions. Using proteomic surveillance, we here tried to elucidate the effects of GM-CSF on neutrophils.Methods
Neutrophils stimulated by GM-CSF were divided into four subcellular fractions: cytosol, membrane/organelle, nuclei, and cytoskeleton. Then, proteins were extracted from each fraction and digested by trypsin. The produced peptides were detected using matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF MS).Results
We detected 33 peptide peaks whose expression was upregulated by more than 2.5-fold in GM-CSF stimulated neutrophils and identified 11 proteins out of the 33 peptides using MALDI-TOF/TOF MS analysis and protein database searches. One of the identified proteins was neutrophil gelatinase-associated lipocalin (NGAL). We confirmed that the level of NGAL in SF was significantly higher in patients with RA than in those with osteoarthritis. We next addressed possible roles of the increased NGAL in RA. We analysed proteome alteration of synoviocytes from patients with RA by treatment with NGAL in vitro. We found that, out of the detected protein spots (approximately 3,600 protein spots), the intensity of 21 protein spots increased by more than 1.5-fold and the intensity of 10 protein spots decreased by less than 1 to 1.5-fold as a result of the NGAL treatment. Among the 21 increased protein spots, we identified 9 proteins including transitional endoplasmic reticulum ATPase (TERA), cathepsin D, and transglutaminase 2 (TG2), which increased to 4.8-fold, 1.5-fold and 1.6-fold, respectively. Two-dimensional electrophoresis followed by western blot analysis confirmed the upregulation of TERA by the NGAL treatment and, moreover, the western blot analysis showed that the NGAL treatment changed the protein spots caused by post-translational modification of TERA. Furthermore, NGAL cancelled out the proliferative effects of fibroblast growth factor (FGF)-2 and epidermal growth factor (EGF) on chondrocytes from a patient with RA and proliferative effect of FGF-2 on chondrosarcoma cells.Conclusions
Our results indicate that GM-CSF contributes to the pathogenesis of RA through upregulation of NGAL in neutrophils, followed by induction of TERA, cathepsin D and TG2 in synoviocytes. NGAL and the upregulated enzymes may therefore play an important role in RA. 相似文献19.
Chemotaxis allows microorganisms to rapidly respond to different environmental stimuli; however, understanding of this process is limited by conventional assays, which typically focus on the response of single axenic cultures to given compounds. In this study, we used a modified capillary assay coupled with flow cytometry and 16S rRNA gene amplicon pyrosequencing to enumerate and identify populations within a lake water microbial community that exhibited chemotaxis towards ammonium, nitrate and phosphate. All compounds elicited chemotactic responses from populations within the lake water, with members of Sphingobacteriales exhibiting the strongest responses to nitrate and phosphate, and representatives of the Variovorax, Actinobacteria ACK-M1 and Methylophilaceae exhibiting the strongest responses to ammonium. Our results suggest that chemotaxis towards inorganic substrates may influence the rates of biogeochemical processes. 相似文献
20.
Tyson R. Shepherd Xu Liu Kris A. DeMali Ernesto J. Fuentes 《Journal of molecular biology》2010,398(5):730-1308
The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a “model” peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer. 相似文献