首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   39篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   1篇
  2015年   11篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   7篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   5篇
  2004年   3篇
  2003年   8篇
  2002年   3篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   7篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1988年   5篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1974年   1篇
  1970年   1篇
  1966年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
101.
102.
Both drought and freezing-thawing of stems induce a loss of hydraulic conductivity (percentage loss of conductivity [PLC]) in woody plants. Drought-induced PLC is often accompanied by physical damage to pit membranes, causing a shift in vulnerability curves (cavitation fatigue). Hence, if cavitated stems are flushed to remove embolisms, the next vulnerability curve is different (shifted to lower tensions). The 84K poplar (Populus alba × Populus glandulosa) clone has small vessels that should be immune from frost-induced PLC, but results demonstrated that freezing-thawing in combination with tension synergistically increased PLC. Frost fatigue has already been defined, which is similar to cavitation fatigue but induced by freezing. Frost fatigue caused a transition from a single to a dual Weibull curve, but drought-fatigued stems had single Weibull curves shifted to lower tensions. Studying the combined impact of tension plus freezing on fatigue provided evidence that the mechanism of frost fatigue may be the extra water tension induced by freezing or thawing while spinning stems in a centrifuge rather than direct ice damage. A hypothesis is advanced that tension is enhanced as ice crystals grow or melt during the freeze or thaw event, respectively, causing a nearly identical fatigue event to that induced by drought.Water transport in xylem conduits of trees occurs while water is under tension (negative pressure; Tyree and Zimmermann, 2002). The xylem water-transport system is vulnerable to cavitation and embolism because tensile water is metastable, so if a gas bubble appears in a conduit it will rapidly expand to fill the conduit whenever the fluid tension is 0.1 MPa or greater, where a tension of 0.1 MPa is equivalent to vacuum pressure. A cavitation event occurs whenever a tensile water column breaks, which results in a water vapor-filled void. Because of Henry’s law of gas solubility in water, this vapor void will eventually equilibrate with air at atmospheric pressure, at which point the conduit is fully embolized (Tyree and Zimmermann, 2002). Embolism has been identified as a limiting factor of primary production (Hubbard et al., 2001). As a result, tree growth and fitness are probably negatively impacted temporarily or seriously limited permanently if embolism is extensive (Christensen-Dalsgaard and Tyree, 2013).The two main factors causing cavitation and embolism are drought and frost (Mayr et al., 2003; Christensen-Dalsgaard and Tyree, 2013). Drought-induced cavitation is caused by the high xylem tension attributed to water stress. The high tension in the sap forces air bubbles into functional conduits from neighboring embolized ones through shared pit membranes (Jarbeau et al., 1995; Sperry et al., 1996; Hacke et al., 2001; Stiller and Sperry, 2002; Christman et al., 2012) according to an air-seeding mechanism (Sperry and Tyree, 1988; Cochard et al., 1992). Hence, the continuity of water flow is disrupted due to cavitation. Frost-induced cavitation, on the other hand, occurs when dissolved gases in the sap freeze out and create bubbles during ice formation because air is not soluble in ice (Mayr et al., 2003; Christensen-Dalsgaard and Tyree, 2013, 2014) but remains entrapped between ice crystals. Once the sap melts and tension is regenerated, the entrapped bubbles may expand to embolize the conduits instead of dissolving (Pittermann and Sperry, 2006). Current thinking is that freezing-induced embolism occurs when the tension exceeds a critical value determined by the surface tension of the bubbles, which mainly depends on the xylem water potential and the bubble radius (Yang and Tyree, 1992; Tyree et al., 1994; Hacke and Sperry, 2001). Larger bubbles may form in conduits with a larger diameter, so species with larger conduits are more vulnerable to frost-induced embolism (Langan et al., 1997; Davis et al., 1999; Pittermann and Sperry, 2006). Furthermore, enhanced loss of hydraulic conductivity (Kh) of trees may occur when stems are subjected to a combination of frost and drought causing low xylem water potential (Mayr et al., 2003; Willson and Jackson, 2006) and repeated freeze-thaw cycles (Sperry and Sullivan, 1992; Cox and Zhu, 2003; Mayr et al., 2003). However, even trees with small conduits are found to suffer severe embolism in winter (Sperry et al., 1988; Améglio et al., 2002) due mostly to freezing-drying of stems.Resilient species are those that suffer no significantly different cavitation resistance before and after a cavitation-refilling cycle (Hacke et al., 2001; Christensen-Dalsgaard and Tyree, 2013). In contrast, species that are weakened by cavitation or frost are said to suffer cavitation fatigue or frost fatigue. Cavitation or frost fatigue is quantified by how much the vulnerability curve is shifted before versus after a fatigue-inducing event, and it is typically reported as a shift in P50, which is either the pressure (negative value) or tension (positive value) that produces 50% loss of Kh. In the rest of this article, we will use T50 to indicate the tension at 50% loss of conductivity or Tx to indicate the tension that induces x% loss of conductivity. Vulnerability curves (VCs) are usually measured by a centrifuge technique (Alder et al., 1997; Cochard et al., 2005), but most researchers measure just five or six points to determine a VC. High-resolution VC curves with nine to 27 points per curve can be collected quickly using the Cochard rotor. Recent studies have successfully used high-resolution VC to characterize the detailed shape of VCs, revealing dual Weibull curves (e.g. r- and s-shaped or dual s-shaped curves; Cai et al., 2014; Wang et al., 2014a) because a complex shape to a VC cannot be identified with just a few points. Furthermore, we used a centrifuge to induce tension while simultaneously freezing in order to study the combined impact of tension and freezing-thawing on frost fatigue and freeze-thaw-induced embolism.In this article, we intend to investigate whether drought and freeze-thaw cycles could have an effect on the cavitation resistance in terminal shoots from adult trees of 84K poplar (Populus alba × Populus glandulosa), with high-resolution analysis of VCs and an artificial freeze-thaw simulation technique. Populus spp. are known to be water-demanding, drought-sensitive species with T50 ranging from 1.07 to 2.5 MPa (Fichot et al., 2015) and vulnerable to winter damage (Feng et al., 2010). Among poplars, 84K poplar is known by foresters to be relatively resistant to water stress, low temperature, diseases, and insects (Zhou et al., 2007). As the main afforestation species in Shaanxi, Gansu, and Qinghai Province, 84K poplar is of great ecological importance.  相似文献   
103.
? It is widely assumed that post-fire tree mortality results from necrosis of phloem and vascular cambium in stems, despite strong evidence that reduced xylem conductivity also plays an important role. ? In this study, experiments with Populus balsamifera were used to demonstrate two mechanisms by which heat reduces the hydraulic conductivity of xylem: air seed cavitation and conduit wall deformation. Heat effects on air seed cavitation were quantified using air injection experiments that isolate potential temperature-dependent changes in sap surface tension and pit membrane pore diameters. Heat effects on conduit wall structure were demonstrated using air conductivity measurements and light microscopy. ? Heating increased vulnerability to cavitation because sap surface tension varies inversely with temperature. Heating did not affect cavitation via changes in pit membrane pore diameters, but did cause significant reductions in xylem air conductivity that were associated with deformation of conduit walls (probably resulting from thermal softening of viscoelastic cell wall polymers). ? Additional work is required to understand the relative roles of cavitation and deformation in the reduction of xylem conductivity, and how reduced xylem conductivity in roots, stems, and branches correlates and interacts with foliage and root necroses to cause tree mortality. Future research should also examine how heat necrosis of ray parenchyma cells affects refilling of embolisms that occur during and after the fire event.  相似文献   
104.
The forelimb digital flexors of the horse display remarkable diversity in muscle architecture despite each muscle-tendon unit having a similar mechanical advantage across the fetlock joint. We focus on two distinct muscles of the digital flexor system: short compartment deep digital flexor (DDF(sc)) and the superficial digital flexor (SDF). The objectives were to investigate force-length behavior and work performance of these two muscles in vivo during locomotion, and to determine how muscle architecture contributes to in vivo function in this system. We directly recorded muscle force (via tendon strain gauges) and muscle fascicle length (via sonomicrometry crystals) as horses walked (1.7 m s(-1)), trotted (4.1 m s(-1)) and cantered (7.0 m s(-1)) on a motorized treadmill. Over the range of gaits and speeds, DDF(sc) fascicles shortened while producing relatively low force, generating modest positive net work. In contrast, SDF fascicles initially shortened, then lengthened while producing high force, resulting in substantial negative net work. These findings suggest the long fibered, unipennate DDF(sc) supplements mechanical work during running, whereas the short fibered, multipennate SDF is specialized for economical high force and enhanced elastic energy storage. Apparent in vivo functions match well with the distinct architectural features of each muscle.  相似文献   
105.
106.
Voltage-dependent calcium channels from a rat brain membrane preparation ("synaptosomes") were incorporated into planar lipid bilayers. The effects of calcium, barium, strontium, manganese, and cadmium ions on the amplitudes and kinetics of single channel currents were examined. The order of single channel conductances was gBa greater than gSr greater than gMn, which was the inverse of the order of the mean channel open times: TMn greater than TCa = TSr greater than TBa. In contrast, the identity of the charge carrier had little or no effect on the mean closed times of the channel. Manganese, in the absence of other permeant ions, can pass through single channels (gMn = 4 pS). However, when added to a solution that contained another type of permeant divalent cation, manganese reduced the single channel current in a voltage-dependent manner. Cadmium, a potent blocker of macroscopic "ensemble" calcium currents in many preparations, reduced the current through an open channel in a manner consistent with Cd ions both not being measurably permeant and interacting with a single site. The permeant ions competed with cadmium for this site with the following order: Mn greater than Sr = Ca greater than Ba. These results are consistent with the existence of no less than one divalent cation binding site in the channel that regulates ion permeation.  相似文献   
107.
Vulnerability of xylem conduits to cavitation and embolism was compared in two species of Rhizophoraceae, the mangrove Rhizophora mangle L. and the tropical moist-forest Cassipourea elliptica (Sw.) Poir. Cavitation (water column breakage preceeding embolism) was monitored by ultrasonic detection; embolism was quantified by its reduction of xylem hydraulic conductivity. Acoustic data were not predictive of loss in hydraulic conductivity, probably because signals from cavitating vessels were swamped by more numerous ones from cavitating fibers. Rhizophora mangle was the less vulnerable to embolism of the two species, losing 80% of its hydraulic conductivity between – 6.0 and – 7.0 MPa. Cassipourea elliptica lost conductivity in linear proportion to decreasing xylem pressure from – 0.5 to – 7.0 MPa. Species vulnerability correlated closely with physiological demands of habitat; the mangrove Rhizophora mangle had field xylem pressures between – 2.5 and – 4.0 MPa. whereas the minimum for Cassipourea elliptica was – 1.6 MPa. Differences in vulnerability between species could be accounted for by differences in the measured air permeability of intervessel pit membranes. According to this explanation, embolism occurs when air enters a water-filled vessel from a neighboring air-filled one via pores in shared pit membranes.  相似文献   
108.
We examined the effects of Pandinus imperator scorpion venom on voltage-gated potassium channels in cultured clonal rat anterior pituitary cells (GH3 cells) using the gigohm-seal voltage-clamp method in the whole-cell configuration. We found that Pandinus venom blocks the voltage-gated potassium channels of GH3 cells in a voltage-dependent and dose-dependent manner. Crude venom in concentrations of 50-500 micrograms/ml produced 50-70% block of potassium currents measured at -20 mV, compared with 25-60% block measured at +50 mV. The venom both decreased the peak potassium current and shifted the voltage dependence of potassium current activation to more positive potentials. Pandinus venom affected potassium channel kinetics by slowing channel opening, speeding deactivation slightly, and increasing inactivation rates. Potassium currents in cells exposed to Pandinus venom did not recover control amplitudes or kinetics even after 20-40 min of washing with venom-free solution. The concentration dependence of crude venom block indicates that the toxins it contains are effective in the nanomolar range of concentrations. The effects of Pandinus venom were mimicked by zinc at concentrations less than or equal to 0.2 mM. Block of potassium current by zinc was voltage dependent and resembled Pandinus venom block, except that block by zinc was rapidly reversible. Since zinc is found in crude Pandinus venom, it could be important in the interaction of the venom with the potassium channel. We conclude that Pandinus venom contains toxins that bind tightly to voltage-dependent potassium channels in GH3 cells. Because of its high affinity for voltage-gated potassium channels and its irreversibility, Pandinus venom may be useful in the isolation, mapping, and characterization of voltage-gated potassium channels.  相似文献   
109.
110.
The neurite outgrowth and adhesion complex (NOAC), isolated from rabbit sera has been dissociated in its major components by reverse-phase chromatography in HPLC by using a C18 column. SDS-PAGE analisys of the active fractions revealed the presence of three major bands of approximately 100, 70 and 50 kDa. Studies on the biological activity of NOAC were carried out on rat cerebellar granule cells. NOAC-cultured cells exhibit a marked resistance to excitotoxic stimuli carried by glutamate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号