首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   19篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2015年   1篇
  2014年   6篇
  2013年   1篇
  2012年   4篇
  2011年   12篇
  2010年   4篇
  2009年   1篇
  2008年   3篇
  2007年   9篇
  2006年   5篇
  2005年   2篇
  2004年   9篇
  2003年   5篇
  2002年   4篇
  2001年   7篇
  2000年   7篇
  1999年   6篇
  1997年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
排序方式: 共有112条查询结果,搜索用时 546 毫秒
71.
72.
Resistance to widely used fungistatic drugs, particularly to the ergosterol biosynthesis inhibitor fluconazole, threatens millions of immunocompromised patients susceptible to invasive fungal infections. The dense network structure of synthetic lethal genetic interactions in yeast suggests that combinatorial network inhibition may afford increased drug efficacy and specificity. We carried out systematic screens with a bioactive library enriched for off‐patent drugs to identify compounds that potentiate fluconazole action in pathogenic Candida and Cryptococcus strains and the model yeast Saccharomyces. Many compounds exhibited species‐ or genus‐specific synergism, and often improved fluconazole from fungistatic to fungicidal activity. Mode of action studies revealed two classes of synergistic compound, which either perturbed membrane permeability or inhibited sphingolipid biosynthesis. Synergistic drug interactions were rationalized by global genetic interaction networks and, notably, higher order drug combinations further potentiated the activity of fluconazole. Synergistic combinations were active against fluconazole‐resistant clinical isolates and an in vivo model of Cryptococcus infection. The systematic repurposing of approved drugs against a spectrum of pathogens thus identifies network vulnerabilities that may be exploited to increase the activity and repertoire of antifungal agents.  相似文献   
73.
Neuronal differentiation from expanded human ventral mesencephalic neural precursor cells (NPCs) is very limited. Astrocytes are known to secrete neurotrophic factors, and so in order to enhance neuronal survival from NPCs, we tested the effect of regional astrocyte-conditioned medium (ACM) from the rat cortex, hippocampus and midbrain on this process. Human NPC's were expanded in FGF-2 before differentiation for 1 or 4 weeks in ACM. The results show that ACM from the hippocampus and midbrain increase the number of neurons from expanded human NPCs, an effect that was not observed with cortical ACM. In addition, both hippocampal and midbrain ACM increased the number and length of phosphorylated neurofilaments. MALDI-TOF analysis used to determine differences in media revealed that although all three regional ACMs had cystatin C, α-2 macroglobulin, extracellular matrix glycoprotein and vimentin, only hippocampal and midbrain ACM also contained clusterin, which when immunodepleted from midbrain ACM eliminated the observed effects on neuronal differentiation. Furthermore, clusterin is a highly glycosylated protein that has no effect on cell proliferation but decreases apoptotic nuclei and causes a sustained increase in phosphorylated extracellular signal-regulated kinase, implicating its role in cell survival and differentiation. These findings further reveal differential effects of regional astrocytes on NPC behavior and identify clusterin as an important mediator of NPC-derived neuronal survival and differentiation.  相似文献   
74.
The chromosome passenger complex (CPC) is an essential regulator of mitosis and cytokinesis. The CPC consists of Aurora B kinase, inner centromere protein (INCENP), and the targeting subunits survivin and borealin/Dasra B. INCENP is a scaffolding subunit for the CPC and activates Aurora B via its conserved IN-box domain. We show that overexpression of soluble IN-box in HeLa cells affects endogenous CPC localization and produces a significant increase in multinucleated and micronucleated cells consistent with CPC loss of function. The dominant-negative effect of soluble IN-box expression depends on residues corresponding to hINCENP W845 and/or F881, suggesting that these are essential for Aurora B binding in vivo. We then screened a targeted library of small (five to nine residues long) circular peptide (CP) IN-box fragments generated using split intein circular ligation of proteins and peptides (SICLOPPS) methodology. We identified a number of CPs that caused modest but reproducible increases in rates of multinucleated and micronucleated cells. Our results provide proof of concept that inhibition of the Aurora B–IN-box interaction is a viable strategy for interfering with CPC function in vivo.  相似文献   
75.
The BioGRID (Biological General Repository for Interaction Datasets, thebiogrid.org ) is an open‐access database resource that houses manually curated protein and genetic interactions from multiple species including yeast, worm, fly, mouse, and human. The ~1.93 million curated interactions in BioGRID can be used to build complex networks to facilitate biomedical discoveries, particularly as related to human health and disease. All BioGRID content is curated from primary experimental evidence in the biomedical literature, and includes both focused low‐throughput studies and large high‐throughput datasets. BioGRID also captures protein post‐translational modifications and protein or gene interactions with bioactive small molecules including many known drugs. A built‐in network visualization tool combines all annotations and allows users to generate network graphs of protein, genetic and chemical interactions. In addition to general curation across species, BioGRID undertakes themed curation projects in specific aspects of cellular regulation, for example the ubiquitin‐proteasome system, as well as specific disease areas, such as for the SARS‐CoV‐2 virus that causes COVID‐19 severe acute respiratory syndrome. A recent extension of BioGRID, named the Open Repository of CRISPR Screens (ORCS, orcs.thebiogrid.org ), captures single mutant phenotypes and genetic interactions from published high throughput genome‐wide CRISPR/Cas9‐based genetic screens. BioGRID‐ORCS contains datasets for over 1,042 CRISPR screens carried out to date in human, mouse and fly cell lines. The biomedical research community can freely access all BioGRID data through the web interface, standardized file downloads, or via model organism databases and partner meta‐databases.  相似文献   
76.
77.
Ungulate browsing and lack of overstory disturbance have historically prevented aspen regeneration on the Northern Yellowstone Winter Range (NYWR). Aspen clones regenerate if sprouts are produced that grow into recruitment stems (>2 m tall) and replace the mature overstory. Beaver reintroduced in 1991 to Eagle Creek on the NYWR facilitated aspen restoration by removing overstory trees and increasing sprouting. However, intense ungulate browsing, primarily from the Northern Yellowstone elk herd, was preventing aspen recruitment in Eagle Creek as of 2005. Since 2005, wolf predation has contributed to a 56% decrease in this elk herd. We investigated the effects of beaver reintroduction, ungulate herbivory, and predator‐mediated declines in elk numbers on aspen regeneration in Eagle Creek from 1997 to 2012. Aerial photos of Eagle Creek in 2005 and 2011 showed that the aspen overstory has not been replaced 21 years after beaver reintroduction (p > 0.05). Sprouting and recruitment were investigated using 4‐m radius circular plots (n = 31) established throughout Eagle Creek in 1997 and monitored annually until 2012. Beaver activity stimulated sprouting in 71% of these plots. In 2012, 77% of the plots had ≥1 recruitment stem and 75% of the paired plots associated with exclosures (n = 16) had aspen stems with an average height ≥2 m. Recent increases in aspen recruitment in Eagle Creek indicate that aspen communities are regenerating. This has likely resulted from decreased ungulate browsing pressure on aspen saplings from 2005 to 2012. These findings are consistent with the predictions of a density‐mediated trophic cascade following wolf reintroduction.  相似文献   
78.
79.
It has been claimed that proteins with more interaction partners (hubs) are both physiologically more important (i.e., less dispensable) and, owing to an assumed high density of binding sites, slow evolving. Not all analyses, however, support these results, probably because of biased and less-than reliable global protein interaction data. Here we provide the first examination of these issues using a comprehensive literature-curated dataset of well-substantiated protein interactions in Saccharomyces cerevisiae. Whereas use of less reliable yeast two-hybrid data alone can reject the possibility that local connectivity correlates with measures of dispensability, in higher quality datasets a relatively robust correlation is observed. In contrast, local connectivity does not correlate with the rate of protein evolution even in reliable datasets. This perhaps surprising lack of correlation with evolutionary rate appears in part to arise from the fact that hub proteins do not have a higher density of residues associated with binding. However, hub proteins do have at least one other set of unusual features, namely rapid turnover and regulation, as manifest in high mRNA decay rates and a large number of phosphorylation sites. This, we suggest, is an adaptation to minimize unwanted activation of pathways that might be mediated by adventitious binding to hubs, were they to actively persist longer than required at any given time point. We conclude that hub proteins are more important for cellular growth rate and under tight regulation but are not slow evolving.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号