首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   908篇
  免费   49篇
  957篇
  2023年   5篇
  2022年   8篇
  2021年   15篇
  2020年   12篇
  2019年   21篇
  2018年   21篇
  2017年   25篇
  2016年   22篇
  2015年   26篇
  2014年   43篇
  2013年   46篇
  2012年   66篇
  2011年   68篇
  2010年   45篇
  2009年   36篇
  2008年   42篇
  2007年   43篇
  2006年   40篇
  2005年   54篇
  2004年   33篇
  2003年   26篇
  2002年   34篇
  2001年   24篇
  2000年   17篇
  1999年   15篇
  1998年   13篇
  1997年   6篇
  1996年   10篇
  1995年   5篇
  1994年   3篇
  1993年   12篇
  1992年   13篇
  1991年   8篇
  1990年   8篇
  1989年   10篇
  1988年   6篇
  1987年   12篇
  1986年   2篇
  1985年   4篇
  1983年   3篇
  1982年   9篇
  1981年   10篇
  1980年   6篇
  1979年   12篇
  1978年   6篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1964年   1篇
  1944年   1篇
排序方式: 共有957条查询结果,搜索用时 15 毫秒
61.
An enhanced intracellular level of Nitric oxide (NO) is essential to ameliorate several pathological conditions of heart and vasculature necessitating the activation of NOS. We have projected in this report the acetylation of eNOS by polyphenolic peracetates (PA) catalyzed by the novel enzyme acetoxy drug: protein transacetylase (TAase) discovered in our laboratory as an unambiguous way of activating NOS which results in the manifestation of physiological action. The human platelet was chosen as the experimental system in order to validate the aforementioned proposition. PA caused profound irreversible activation of platelet NADPH cytochrome c reductase mediated by TAase. The convincing biochemical evidences are presented to show that PA could cause acetylation of the reductase domain of NOS leading to the activation of eNOS in tune with their specificities to platelet TAase. As a result, the enhanced level of NO due to activation of platelet eNOS by PA was found to inhibit the ADP-induced platelet aggregation. The present studies highlight for the first time the role of PA as the novel potent agent for enhancing the intracellular NO levels.  相似文献   
62.
The purification and characterization of the buffalo liver microsomal transacetylase (TAase) catalyzing the transfer of acetyl groups from a model acetoxy drug: 7,8-diacetoxy-4-methylcoumarin (DAMC) to GST3-3 has been described here. The enzyme was routinely assayed using DAMC and cytosolic GST as the substrates and was partially purified from microsomes of the buffalo liver. The enzyme was found to have approximate molecular of weight 65 kDa. The action of TAase and DAMC on liver cytosolic GST resulted in the formation of monoacetoxymonohydroxy-4-methylcoumarin (MAMHC) and 7,8-dihydroxy-4-methylcoumarin (DHMC), although the former was the major metabolite. The buffalo liver microsomal TAase exhibited hyperbolic kinetics and yielded K(m) (1667 microM) and V(max) (192 units) when the concentration of DAMC was varied keeping the concentration of GST constant. After having characterized the nature of the substrates and a product of the TAase-catalyzed reaction, we set out to identify the acetylated protein which is another product of the reaction. GST3-3 was used as a model protein substrate for the action of TAase using DAMC as the acetyl donor. The subunit of control and modified GST3-3 were separated by SDS-polyacrylamide gel electrophoresis (PAGE) and digested with trypsin. The tryptic peptides were extracted from the gel pieces and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOFMS). The data search for calibrated and labeled mass peaks of peptides was performed on the Matrix Science Server using the search engine Mascot. The peptide maps so obtained covered 97% of the GST3-3 sequence. On comparison of MALDI peptide maps of modified and control GST, seven new peaks were recognized corresponding to the potentially acetylated peptides in peptide map. The mass value of each of them was 42 Da higher than the theoretical mass of a non-modified GST3-3 tryptic peptide, strongly suggesting acetylation. By examining the fragmentation patterns and by comparing experimental and predicted values for MS/MS daughter ions, the identity of the seven acetylated GST tryptic peptides could be confirmed by the application of LC/MS/MS. In the modified GST, N-terminal proline and six lysines (Lys(51), Lys(82), Lys(123), Lsy(181), Lys(191) and Lys(210)) were found to be acetylated. The structure of acetylated GST revealed that the lysines that underwent acetylation were peripheral in positions.  相似文献   
63.

Background  

Phylogenetic analysis of human complete mitochondrial DNA sequences has largely contributed to resolving phylogenies and antiquity of different lineages belonging to the majorhaplogroups L, N and M (East-Asian lineages). In the absence of whole mtDNA sequence information of M lineages reported in India that exhibits highest diversity within the sub-continent, the present study was undertaken to provide a detailed analysis of this haplogroup to precisely characterize the lineages and unravel their intricate phylogeny.  相似文献   
64.
Loops connect regular secondary structures. In many instances, they are known to play important biological roles. Analysis and prediction of loop conformations depend directly on the definition of repetitive structures. Nonetheless, the secondary structure assignment methods (SSAMs) often lead to divergent assignments. In this study, we analyzed, both structure and sequence point of views, how the divergence between different SSAMs affect boundary definitions of loops connecting regular secondary structures. The analysis of SSAMs underlines that no clear consensus between the different SSAMs can be easily found. Because these latter greatly influence the loop boundary definitions, important variations are indeed observed, that is, capping positions are shifted between different SSAMs. On the other hand, our results show that the sequence information in these capping regions are more stable than expected, and, classical and equivalent sequence patterns were found for most of the SSAMs. This is, to our knowledge, the most exhaustive survey in this field as (i) various databank have been used leading to similar results without implication of protein redundancy and (ii) the first time various SSAMs have been used. This work hence gives new insights into the difficult question of assignment of repetitive structures and addresses the issue of loop boundaries definition. Although SSAMs give very different local structure assignments capping sequence patterns remain efficiently stable.  相似文献   
65.
Rapid fermentation of bagasse hydrolysate to ethanol under anaerobic conditions by a strain of Saccharomyces cerevisiae has been studied in batch and continuous cultures at pH 4.0 and 30°C temperature with cell recycle. By using a 23.6 g/liter cell concentration, a concentation of 9.7% (w/v)ethanol was developed in a period of 6 hr. The rate of fermentation was found to increase with supplementation of yeast vitamins in the hydrolysate. In continuous culture employing cell recycle and a 0.127 v/v/m air flow rate, a cell mass concentration of 48.5 g/liter has been achieved. The maximum fermentor productivity of ethanol obtained under these conditions was 32.0 g/liter/hr, which is nearly 7.5 times higher than the normal continuous process without cell recycle and air sparging. The ethanol productivity was found to decrease linearly with ethanol concentration. Conversion of glucose in the hydrolysate to ethanol was achieved with a yield of 95 to 97% of theoretical.  相似文献   
66.
Pathogenicity of Mycobacterium tuberculosis is closely related to its ability to survive and replicate in the hostile environment of macrophages. For some pathogenic bacteria, secretion of ATP-utilizing enzymes into the extracellular environment aids in pathogen survival via P2Z receptor-mediated, ATP-induced death of infected macrophages. A component of these enzymes is nucleoside diphosphate kinase (Ndk). The ndk gene was cloned from M. tuberculosis H37Rv and expressed in Escherichia coli. Ndk was secreted into the culture medium by M. tuberculosis, as determined by enzymatic activity and Western blotting. Purified Ndk enhanced ATP-induced macrophage cell death, as assayed by the release of [14C]adenine. A catalytic mutant of Ndk failed to enhance ATP-induced macrophage cell death, and periodate-oxidized ATP (oATP), an irreversible inhibitor of P2Z receptor, blocked ATP/Ndk-induced cell death. Purified Ndk was also found to be autophosphorylated with broad specificity for all nucleotides. Conversion of His117-->Gln, which is part of the nucleotide-binding site, abolished autophosphorylation. Purified Ndk also showed GTPase activity. Collectively, these results indicate that secreted Ndk of M. tuberculosis acts as a cytotoxic factor for macrophages, which may help in dissemination of the bacilli and evasion of the immune system.  相似文献   
67.

Background

Efficient control of tuberculosis (TB) requires development of strategies that can enhance efficacy of the existing vaccine Mycobacterium bovis Bacille Calmette Guerin (BCG). To date only a few studies have explored the potential of latency-associated antigens to augment the immunogenicity of BCG.

Methods/Principal Findings

We evaluated the protective efficacy of a heterologous prime boost approach based on recombinant BCG and DNA vaccines targeting α-crystallin, a prominent latency antigen. We show that “rBCG prime - DNA boost” strategy (R/D) confers a markedly superior protection along with reduced pathology in comparison to BCG vaccination in guinea pigs (565 fold and 45 fold reduced CFU in lungs and spleen, respectively, in comparison to BCG vaccination). In addition, R/D regimen also confers enhanced protection in mice. Our results in guinea pig model show a distinct association of enhanced protection with an increased level of interleukin (IL)12 and a simultaneous increase in immuno-regulatory cytokines such as transforming growth factor (TGF)β and IL10 in lungs. The T cell effector functions, which could not be measured in guinea pigs due to technical limitations, were characterized in mice by multi-parameter flow cytometry. We show that R/D regimen elicits a heightened multi-functional CD4 Th1 cell response leading to enhanced protection.

Conclusions/Significance

These results clearly indicate the superiority of α-crystallin based R/D regimen over BCG. Our observations from guinea pig studies indicate a crucial role of IL12, IL10 and TGFβ in vaccine-induced protection. Further, characterization of T cell responses in mice demonstrates that protection against TB is predictable by the frequency of CD4 T cells simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and IL2. We anticipate that this study will not only contribute toward the development of a superior alternative to BCG, but will also stimulate designing of TB vaccines based on latency antigens.  相似文献   
68.
We have transferred DNa to Chinese hamster ovary (CHO) cells by DNA-mediated transformation. CHO tk- cells were transformed with the clones gene for herpes simplex virus thymidine kinase (HSV-tk) and were found to have a 50-fold lower frequency of transformation than mouse Ltk- cells at the same DNA dosage. By altering the amount of tk gene and carrier DNA present, frequencies of up to 5 x 10(-5) were obtained. CHO HSV-tk+ transformants were very stable, and in several clones the HSV-tk gene copies integrated in higher-molecular-weight DNA. These cells also exhibited cotransformation for unselected markers. CHO lines were also transformed at a frequency of 10(-4) with the bacterial gene Ecogpt in a SV40-pBR322 vector. CHO tk-cells could be transformed at a frequency of 10(-7) with cellular DNA isolated from CHO tk+ cells. CHO cells offer a well-defined genetic system within which to transfer either cloned or whole cellular DNAs.  相似文献   
69.
Allopolyploidy, the joining of two parental genomes in a polyploid organism with diploid meiosis, is an important mechanism of reticulate evolution. While many successful long-established allopolyploids are known, those formed recently undergo an instability phase whose basis is now being characterized. We describe observations made with the Arabidopsis system that include phenotypic instability, gene silencing and activation, and methylation changes. We present a model based on the epigenetic destabilization of genomic repeats, which in the parents are heterochromatinized and suppressed. We hypothesize that loss of epigenetic suppression of these sequences, here defined as the heterome, results in genomic instability including silencing of single-copy genes.  相似文献   
70.
SGLT1 as a sodium/glucose cotransporter is strongly inhibited by phlorizin, a phloretin 2'-glucoside that has strong interactions with the C-terminal loop 13. We have examined phlorizin recognition by the protein by site-directed single Trp scanning mutagenesis experiments. Six mutants (Q581W, E591W, R601W, D611W, E621W, and L630W) of truncated loop 13 (amino acids 564-638) were expressed in Escherichia coli and purified to homogeneity. Changes in Trp quenching and positions of the emission maxima were determined after addition of phlorizin. D611W displayed the largest quenching of 80%, followed by R601W (67%). It also exhibited the maximum red shift in Trp fluorescence ( approximately 14 nm), indicating an exposure of this region to a more hydrophilic environment. Titration experiments performed for each mutant showed a similar affinity for all mutants, except for D611W, which exhibited a significantly lower affinity (Kd approximately 54 microm). Also the maximum change in the collisional quenching constant by acrylamide was noted for D611W (KSV = 11 m-1 in the absence of phlorizin and 55 m-1 in its presence). Similar results were obtained with phloretin. CD measurements and computer modeling revealed that D611W is positioned in a random coil situated between two alpha-helical segments. By combining gel electrophoresis, enzymatic fragmentation, and matrix-assisted laser desorption ionization mass spectrometry, we also analyzed truncated loop 13 photolabeled with 3-azidophlorizin. The attachment site of the ortho-position of aromatic ring B of phlorizin was localized to Arg-602. Taken together, these data indicate that phlorizin binding elicits changes in conformation leading to a less ordered state of loop 13. Modeling suggests an interaction of the 4- and 6-OH groups of aromatic ring A of phlorizin with the region between amino acids 606 and 611 and an interaction of ring B at or around amino acid 602. Phloretin seems to interact with the same region of the protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号