首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   6篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   7篇
  2013年   7篇
  2012年   7篇
  2011年   14篇
  2010年   6篇
  2009年   3篇
  2008年   6篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   3篇
  2003年   2篇
排序方式: 共有82条查询结果,搜索用时 31 毫秒
21.
Carbapenemase-producing Gram-negative bacteria peak clinical interest due to their ability to hydrolyze most β-lactams, including carbapenems; moreover, their genes spread through bacterial populations by horizontal transfer. Bacteria with acquired carbapenemase have sporadically been reported in the Czech Republic, so far only in Enterobacteriaceae and Pseudomonas aeruginosa. In this study, we described the first finding of a KPC-2-producing strain of Klebsiella pneumoniae, which was isolated from a surgical wound swab, decubitus ulcer, and urine of a patient previously hospitalized in Greece. The patient underwent various antibiotic therapies including a colistin treatment. However, after approximately 20 days of the colistin therapy, the strain developed a high-level resistance to this drug. All the isolates were indistinguishable by pulsed field gel electrophoretic analysis and belonged to the international clone ST258, which is typical of KPC-producing K. pneumoniae isolates. The bla KPC-2 gene was located on a Tn4401a transposon variant. The OmpK35 and OmpK36 genes analysis performed due to the high resistance level of the strains to β-lactams exhibited no changes in their sequence or in their expression when compared with carbapenem-susceptible isolates.  相似文献   
22.
23.
Targeted mass spectrometry‐based proteomics approaches enable the simultaneous and reproducible quantification of multiple protein analytes across numerous conditions in biology and clinical studies. These approaches involve e.g. selected reaction monitoring (SRM) typically conducted on a triple quadrupole mass spectrometer, its high‐resolution variant named pseudo‐SRM (p‐SRM), carried out in a quadrupole coupled with an TOF analyzer (qTOF), and “sequential window acquisition of all theoretical spectra” (SWATH). Here we compared these methods in terms of signal‐to‐noise ratio (S/N), coefficient of variance (CV), fold change (FC), limit of detection and quantitation (LOD, LOQ). We have shown the highest S/N for p‐SRM mode, followed by SRM and SWATH, demonstrating a trade‐off between sensitivity and level of multiplexing for SRM, p‐SRM, and SWATH. SRM was more sensitive than p‐SRM based on determining their LOD and LOQ. Although SWATH has the worst S/N, it enables peptide multiplexing with post‐acquisition definition of the targets, leading to better proteome coverage. FC between breast tumors of different clinical‐pathological characteristics were highly correlated (R2>0.97) across three methods and consistent with the previous study on 96 tumor tissues. Our technical note presented here, therefore, confirmed that outputs of all the three methods were biologically relevant and highly applicable to cancer research.  相似文献   
24.
25.
Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K+ and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K+ clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K+. As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K+, α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K+.  相似文献   
26.
27.
While the pathogenic role of dicarbonyl stress and accelerated formation of advanced glycation end products (AGEs) to glucose intolerance and to the development of diabetic complications is well established, little is known about these processes in gestational diabetes mellitus (GDM), a condition pathogenically quite similar to type 2 diabetes. The aims of the present study were (i) to determine plasma thiamine and erythrocyte thiamine diphosphate (TDP) and transketolase (TKT) activity in pregnant women with and without GDM, (ii) to assess relationships between thiamine metabolism parameters and selected clinical, biochemical and anthropometric characteristics and, finally, (iii) to analyse relationship between variability in the genes involved in the regulation of transmembrane thiamine transport (i.e. SLC19A2 and SLC19A3) and relevant parameters of thiamine metabolism. We found significantly lower plasma BMI adjusted thiamine in women with GDM (P = 0.002, Mann-Whitney) while levels of erythrocyte TDP (an active TKT cofactor) in mid-trimester were significantly higher in GDM compared to controls (P = 0.04, Mann-Whitney). However, mid-gestational TKT activity - reflecting pentose phosphate pathway activity - did not differ between the two groups (P > 0.05, Mann-Whitney). Furthermore, we ascertained significant associations of postpartum TKT activity with SNPs SLC19A2 rs6656822 and SLC19A3 rs7567984 (P = 0.03 and P = 0.007, resp., Kruskal-Wallis). Our findings of increased thiamine delivery to the cells without concomitant increase of TKT activity in women with GDM therefore indicate possible pathogenic role of thiamine mishandling in GDM. Further studies are needed to determine its contribution to maternal and/or neonatal morbidity.  相似文献   
28.
β-Arrestin is a scaffold protein that regulates signal transduction by seven transmembrane-spanning receptors. Among other functions it is also critically required for Wnt/β-catenin signal transduction. In the present study we provide for the first time a mechanistic basis for the β-arrestin function in Wnt/β-catenin signaling. We demonstrate that β-arrestin is required for efficient Wnt3a-induced Lrp6 phosphorylation, a key event in downstream signaling. β-Arrestin regulates Lrp6 phosphorylation via a novel interaction with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding protein Amer1/WTX/Fam123b. Amer1 has been shown very recently to bridge Wnt-induced and Dishevelled-associated PtdIns(4,5)P2 production to the phosphorylation of Lrp6. Using fluorescence recovery after photobleaching we show here that β-arrestin is required for the Wnt3a-induced Amer1 membrane dynamics and downstream signaling. Finally, we show that β-arrestin interacts with PtdIns kinases PI4KIIα and PIP5KIβ. Importantly, cells lacking β-arrestin showed higher steady-state levels of the relevant PtdInsP and were unable to increase levels of these PtdInsP in response to Wnt3a. In summary, our data show that β-arrestins regulate Wnt3a-induced Lrp6 phosphorylation by the regulation of the membrane dynamics of Amer1. We propose that β-arrestins via their scaffolding function facilitate Amer1 interaction with PtdIns(4,5)P2, which is produced locally upon Wnt3a stimulation by β-arrestin- and Dishevelled-associated kinases.  相似文献   
29.
Aminoglycoside-2′′-phosphotransferase-IIa [APH(2′′)-IIa] is one of a number of homologous bacterial enzymes responsible for the deactivation of the aminoglycoside family of antibiotics and is thus a major component in bacterial resistance to these compounds. APH(2′′)-IIa produces resistance to several clinically important aminoglycosides (including kanamycin and gentamicin) in both gram-positive and gram-negative bacteria, most notably in Enterococcus species. We have determined the structures of two complexes of APH(2′′)-IIa, the binary gentamicin complex and a ternary complex containing adenosine-5′-(β,γ-methylene)triphosphate (AMPPCP) and streptomycin. This is the first crystal structure of a member of the APH(2′′) family of aminoglycoside phosphotransferases. The structure of the gentamicin-APH(2′′)-IIa complex was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and was refined to a crystallographic R factor of 0.210 (Rfree, 0.271) at a resolution of 2.5 Å. The structure of the AMPPCP-streptomycin complex was solved by molecular replacement using the gentamicin-APH(2′′)-IIa complex as the starting model. The enzyme has a two-domain structure with the substrate binding site located in a cleft in the C-terminal domain. Gentamicin binding is facilitated by a number of conserved acidic residues lining the binding cleft, with the A and B rings of the substrate forming the majority of the interactions. The inhibitor streptomycin, although binding in the same pocket as gentamicin, is orientated such that no potential phosphorylation sites are adjacent to the catalytic aspartate residue. The binding of gentamicin and streptomycin provides structural insights into the substrate selectivity of the APH(2′′) subfamily of aminoglycoside phosphotransferases, specifically, the selectivity between the 4,6-disubstituted and the 4,5-disubstituted aminoglycosides.The emergence of bacteria resistant to several important classes of antibiotics has become a major clinical problem over the last few years. Almost every antibacterial compound in clinical use today has associated examples of resistant bacterial isolates (39), including life-threatening strains of Escherichia coli, Mycobacterium tuberculosis, Pseudomonas aeruginosa, and various enterococci. The latter are among the most common antibiotic-resistance bacteria isolated from patients with nosocomial infections in the United States today. The synergistic use of either ampicillin or vancomycin with an aminoglycoside, such as kanamycin or gentamicin, has long been the optimal therapy for serious enterococcal infections; however, many previously susceptible enterococcal strains have since acquired resistance to the aminoglycosides. The mechanisms of resistance are many and varied, although only three are readily understood: (i) mutation of the ribosomal target, (ii) reduced permeability and/or increased efflux of the drug, and (iii) enzymatic deactivation of the drug. Resistance to the aminoglycosides through enzymatic deactivation, although seemingly straightforward, is in reality a complex problem involving three different classes of enzyme. These enzyme classes are the ATP-dependent phosphotransferases (APH) and adenyltransferases (ANT), and the acetyl coenzyme A-dependent N-acetyltransferases (AAC). This area of research has been extensively reviewed in the past few years (2, 4, 13, 29, 39, 47, 52, 53).Originally isolated from soil bacteria, including various species of Streptomyces and Micromonospora (20), the aminoglycosides are a family of potent, broad-spectrum antibiotics that includes clinically relevant drugs such as gentamicin, neomycin, amikacin, kanamycin, and streptomycin. The structures of these compounds, with the exception of that of streptomycin, are all similar, consisting of a central aminocyclitol ring (the B ring) with two or three substituted aminoglycan rings (A, C, and in some cases, D) attached at either the 4 and 5 positions (the 4,5-disubstituted aminoglycosides, which include neomycin and lividomycin) or the 4 and 6 positions (the 4,6-disubstituted aminoglycosides, such as gentamicin and kanamycin). Streptomycin, a competitive inhibitor of aminoglycoside-2′′-phosphotransferase-IIa [APH(2′′)-IIa] (45), is an atypical aminoglycoside that does not fall into either the 4,5-disubstituted or 4,6-disubstituted classes. It has a modified ribose (ring B) attached to position 4 on a 1,3-diguanidinium-substituted aminocyclitol ring (ring A) with no substituent at the 5 or 6 position. The structures of gentamicin, kanamycin, neomycin, and streptomycin are shown in Fig. Fig.1.1. The aminoglycosides are targeted to the 16S rRNA of the bacterial 30S ribosomal subunit, where they selectively bind to the decoding aminoacyl (A) site (31, 51) and stabilize the conformation of the tRNA bound to a cognate mRNA codon. This decreases the dissociation rate of aminoacyl-tRNA and promotes miscoding (28). The structures of a number of the aminoglycosides with either the 30S subunit or oligonucleotides containing minimal A sites are known (51).Open in a separate windowFIG. 1.Structures of gentamicin, kanamycin, streptomycin, and neomycin. Gentamicin and kanamycin are classified as 4,6-disubstituted aminoglycosides, whereas neomycin is an example of a 4,5-disubstituted compound. The three structural variants which comprise gentamicin C are indicated. Amikacin is similar to kanamycin, although the substituent on the N1 amine is a 4-amino-2-hydroxy-1-oxobutyl group. Taken together, the A and B rings of aminoglycosides, such as gentamicin, kanamycin, and neomycin, are commonly known as the neamine moiety.The enzymes which deactivate the aminoglycosides are named according to the reaction they catalyze and the site on the aminoglycoside at which they act. The APH(2′′) enzymes, which give rise to high-level resistance to gentamicin in enterococci, phosphorylate gentamicin and kanamycin at the 2′′-hydroxyl group of the C ring (Fig. (Fig.1).1). The APH(3′) enzymes, another major subfamily of the phosphotransferases, phosphorylate kanamycin and neomycin at the 3′-hydroxyl on the A ring but cannot deactivate gentamicin, since it has no corresponding 3′-hydroxyl. The individual members of each family can normally bind only a subset of the available drugs, and this difference in drug specificity is known as the resistance profile, designated with a roman numeral and, in some cases, a letter identifying a specific gene. The first APH(2′′) enzyme discovered for enterococci was the bifunctional AAC(6′)-Ie-APH(2′′)-Ia enzyme, which possesses both 6′-acetylating and 2′′-phosphorylating activities (17, 33). Enterococci with the corresponding gene show resistance to almost all clinically relevant aminoglycosides (38). Four additional APH(2′′) enzymes have since been isolated for Enterococcus spp.; they are designated APH(2′′)-Ib (27), APH(2′′)-Ic (11), APH(2′′)-Id (46), and APH(2′′)-Ie (10) and were initially classified as genetic variants of an APH(2′′)-I-type enzyme. Recently, APH(2′′)-Ib, APH(2′′)-Ic, and APH(2′′)-Id have been reclassified as distinct enzymes with different resistance profiles and, more importantly, different nucleotide specificities, such that they are now named APH(2′′)-IIa, APH(2′′)-IIIa, and APH(2′′)-IVa, respectively (44). APH(2′′)-Ie was not included in the latter study, but based upon the very high sequence similarity with APH(2′′)-IVa (93%) (see Table S1 in the supplemental material), it is possible that it is a genetic variant of APH(2′′)-IVa.Structural details are currently known for only two members of the APH(3′) family, APH(3′)-IIIa (5, 18, 23) and APH(3′)-IIa (37). These enzymes share a two-domain structure similar to the catalytic domains of the eukaryotic Ser/Thr and Tyr protein kinases. Moreover, the phosphotransferases and kinases share several important sequence motifs related to nucleotide binding and phosphoryl transfer, most notably the catalytic loop (HXDXXXXN) and the activation segment (GXIDXG), where X is any amino acid. Not surprisingly, the catalytic mechanisms of the phosphotransferases and the kinases are identical, involving the nucleophilic attack by the target hydroxyl on the γ phosphate of ATP, facilitated by a conserved aspartate residue from the catalytic loop (29, 54). A comparison of the known APH(2′′) and APH(3′) sequences shows that the two families of phosphotransferases share these kinase-like motifs, and there appears to be some partial conservation of acidic residues in the substrate binding region. It has been suggested that their structures may be similar (37). Here, we report the first structure of an APH(2′′) enzyme, APH(2′′)-IIa as the binary complex with the preferred substrate gentamicin and the ternary complex with the nonhydrolyzable ATP analog adenosine-5′-(β,γ-methylene)triphosphate (AMPPCP) and the competitive inhibitor streptomycin.  相似文献   
30.
In plants, it is hypothesized that allocation trade-offs may appear only when expenditures like seed production are high or external resources are scarce. In this study, we tested whether reproductive costs are more pronounced under enhanced interspecific competition.In a common garden, we investigated phenotypic correlations between sexual reproduction, clonal growth and storage structures in the grassland perennial, Succisa pratensis. During the past 50 years, habitats of this species have faced an expansion of clonal grasses that increase competition intensity. We simulated this process by growing five populations of Succisa from high- and low-production habitats with its clipped and non-clipped competitor, Agrostis capillaris. In addition, we experimentally removed flower heads of Succisa plants from one population grown with and without A. capillaris.We demonstrated costs of sexual reproduction by flower-head removal (resulting in increased plant size and relative allocation to belowground structures) but not by phenotypic correlations. We found no evidence that reproductive costs increase in a competitive environment and the opposite pattern was shown in both approaches used. However, high competition intensity reduced relative investment to flower-head production. In plants from low-production habitats, competition also reduced the absolute number of flower heads and belowground biomass as a result of smaller plant size. We assume that populations from low-production habitats are more prone to extinction as they have a reduced likelihood of local persistence and of escape to more suitable habitats during advancing succession.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号