首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   4篇
  2020年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
11.
Human Ecology - While there is a general assumption that labor has a positive effect on pastoral production, studies that have tried to quantify this relationship have found no effects. This is...  相似文献   
12.
Weather extremes are one important element of ongoing climate change, but their impacts are poorly understood because they are, by definition, rare events. If the frequency and severity of extreme weather events increase, there is an urgent need to understand and predict the ecological consequences of such events. In this study, we aimed to quantify the effects of snow storms on nest survival in Antarctic petrels and assess whether snow storms are an important driver of annual breeding success and population growth rate. We used detailed data on daily individual nest survival in a year with frequent and heavy snow storms, and long term data on petrel productivity (i.e., number of chicks produced) at the colony level. Our results indicated that snow storms are an important determinant of nest survival and overall productivity. Snow storm events explained 30% of the daily nest survival within the 2011/2012 season and nearly 30% of the interannual variation in colony productivity in period 1985–2014. Snow storms are a key driver of Antarctic petrel breeding success, and potentially population dynamics. We also found state‐dependent effects of snow storms and chicks in poor condition were more likely to die during a snow storm than chicks in good condition. This stresses the importance of considering interactions between individual heterogeneity and extreme weather events to understand both individual and population responses to climate change.  相似文献   
13.
Determining the importance of physical and biological drivers in shaping biodiversity in diverse ecosystems remains a global challenge. Advancements have been made towards this end in large marine ecosystems with several studies suggesting environmental forcing as the primary driver. However, both empirical and theoretical studies point to additional drivers of changes in diversity involving trophic interactions and, in particular, predation. Moreover, a more integrated but less common approach to the assessment of biodiversity changes involves analyses of spatial β diversity, whereas most studies to date assess only changes in species richness (α diversity). Recent research has established that when cod, a dominant generalist predator, was overfished and collapsed in a northwest Atlantic food web, spatial β diversity increased; that is, the spatial structure of the fish assemblage became increasingly heterogeneous. If cod were to recover, would this situation be reversible, given the inherent complexity and non‐linear dynamics that typify such systems? A dramatic increase of cod in an ecologically similar large marine ecosystem may provide an answer. Here we show that spatial β diversity of fish assemblages in the Barents Sea decreased with increasing cod abundance, while decadal scale changes in temperature did not play a significant role. These findings indicate a reversibility of the fish assemblage structure in response to changing levels of an apex predator and highlight the frequently overlooked importance of trophic interactions in determining large‐scale biodiversity patterns. As increased cod abundance was largely driven by changes in fisheries management, our study also shows that management policies and practices, particularly those involving apex predators, can have a strong effect in shaping spatial diversity patterns, and one should not restrict the focus to effects of climate change alone.  相似文献   
14.
Empirical work suggest that long‐lived organisms have adopted risk sensitive reproductive strategies where individuals trade the amount of resources spent on reproduction versus survival according to expected future environmental conditions. Earlier studies also suggest that climate affects population dynamics both directly by affecting population vital rates and indirectly through long‐term changes in individual life histories. Using a seasonal and state‐dependent individual‐based model we investigated how environmental variability affects the selection of reproductive strategies and their effect on population dynamics. We found that: (1) dynamic, i.e. plastic, reproductive strategies were optimal in a variable climate. (2) Females in poor and unpredictable climatic regimes allocated fewer available resources in reproduction and more in own somatic growth. This resulted in populations with low population densities, and a high average female age and body mass. (3) Strong negative density dependence on offspring body mass and survival, along with co‐variation between climatic severity and population density, resulted in no clear negative climatic effects on reproductive success and offspring body mass. (4) Time series analyses of population growth rates revealed that populations inhabiting benign environments showed the clearest response to climatic perturbations as high population density prohibited an effective buffering of adverse climatic effects as individuals were not able to gain sufficient body reserves during summer. Regularly occurring harsh winters ‘harvested’ populations, resulting in persistent low densities, and released them from negative density dependent effects, resulting in high rewards for a given resource allocation.  相似文献   
15.
What regulate and limit reindeer populations in Norway?   总被引:5,自引:0,他引:5  
An understanding of how species are affected by top-down and bottom-up processes in food webs, and how these forces interact with climatic conditions is crucial for how ecosystems should be managed. In Norway large carnivores are effectively removed from extensive areas to protect livestock, leaving human harvesting as the only significant top-down force on ungulate populations. We examined the relative role of top-down and bottom-up processes for 58 semi-domesticated reindeer populations in Norway subjected to contrasting climatic regimes over the period 1981–2005. Intensive herding and international agreement have resulted in a situation where some populations are unable to undertake seasonal migration to the interior to escape the unfavourable climatic conditions that rule the coastal region in the winter, a critical season for northern ungulates. We used this natural manipulation to contrast between populations with 'poor' and 'good' winter conditions. For populations with good winter conditions, average body size increased with harvesting, suggesting that some top-down process was necessary to avoid food limitation. Time-series analyses revealed that direct regulation of population size was only evident in populations subjected to intensive harvesting. The lack of direct regulation in populations subjected to low harvesting resulted in high vulnerability to harsh winter weather. The body size and climate vulnerability of populations with poor winter conditions was unaffected of harvesting, but average densities was positively related to overall vegetation productivity as indexed by satellite images (NDVI). Top-down processes appeared to be necessary to dampen the effect of harsh winters in populations with generally good winter conditions. Conversely, populations subjected to generally poor winter conditions appeared to be more influenced by bottom-up processes and buffered climatic perturbations by increasing body size.  相似文献   
16.
The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain‐on‐snow) can cause ‘icing’, restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a ‘barometer’ of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between‐year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long‐term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to ‘rain‐on‐snow’ events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density‐dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important ‘missing’ mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic.  相似文献   
17.
We studied several aspects of the foraging ecology of fulmars rearing young chicks on Bjørnøya. To determine precisely the duration of foraging trips during the brooding period, we used an automated logging system that recorded the presence of fulmars fitted with transponders. We also tracked, with satellite transmitters, four parent fulmars during the brooding period, and two after the chick had been left alone. When brooding the chick, fulmars appeared to alternate very rapidly on the nest, with foraging trips lasting on average 8?h. This period appeared constraining for the birds since parents lost mass. The growth of chicks was dependent on the ability of the female (and not the male) to do short foraging trips. At this time birds are foraging at an average distance of 60?km from the colony, with birds concentrating on the shelf around Bjørnøya. They did not return from one trip to the next to the same foraging area. As the season progressed and the chicks were left alone on the nest, parents increased the duration and maximum range of foraging trips as well as the distance covered. However, they still perform a succession of relatively short foraging trips to the east of the Bjørnøya shelf but they interspersed these short trips with longer foraging trips. One bird returned twice to the same site along the Norwegian coast 570?km from Bjørnøya, the other foraged at 580?km in the mid-Barents Sea. Average flight speed including time spent on the water was 28?km/h and reached 70?km/h during bouts of more than 1?h when the bird was probably continuously in flight.  相似文献   
18.
Life histories are state-dependent, and an individual's reproductive decisions are determined by its available resources and the needs of its offspring. Here we test how a chick's needs for food and protection influence parental decisions in the Antarctic petrel, Thalassoica antarctica , where the parents, due to their long breeding lifespan, are expected to give priority to their own needs before those of the young. We exchanged one-day-old chicks with four-day-old chicks and studied how the parents subsequently provided care to the chick. The duration of the guarding period was adjusted, and parents left older chicks earlier and younger chicks later compared to controls. Three mechanisms were responsible for the adjustments. 1) Parents with an older chick co-ordinated fewer guarding spells whereas parents with a younger chick co-ordinated more guarding spells. 2) At the last guarding spell, i.e. where a parent left the chick alone before the partner returned, less time was spent with older chicks, and more time with younger chicks. 3) Foraging trip duration was shortened by parents given older chicks and prolonged by parents given younger chicks, probably in response to the chick's food demand. Hence, the parents responded quickly to the altered needs of the chick. Parents with high body mass guarded longer and were better able to co-ordinate the guarding spells compared to lighter parents. In conclusion, Antarctic petrels adjust reproductive decisions to their own, their mate's, and their chick's state, and they seem to respond to the chick's needs for both food and protection.  相似文献   
19.
  1. Climate change is commonly associated with many species redistributions and the influence of other factors may be marginalized, especially in the rapidly warming Arctic.
  2. The Barents Sea, a high latitude large marine ecosystem in the Northeast Atlantic has experienced above‐average temperatures since the mid‐2000s with divergent bottom temperature trends at subregional scales.
  3. Concurrently, the Barents Sea stock of Atlantic cod Gadus morhua, one of the most important commercial fish stocks in the world, increased following a large reduction in fishing pressure and expanded north of 80°N.
  4. We examined the influence of food availability and temperature on cod expansion using a comprehensive data set on cod stomach fullness stratified by subregions characterized by divergent temperature trends. We then tested whether food availability, as indexed by cod stomach fullness, played a role in cod expansion in subregions that were warming, cooling, or showed no trend.
  5. The greatest increase in cod occupancy occurred in three northern subregions with contrasting temperature trends. Cod apparently benefited from initial high food availability in these regions that previously had few large‐bodied fish predators.
  6. The stomach fullness in the northern subregions declined rapidly after a few years of high cod abundance, suggesting that the arrival of cod caused a top‐down effect on the prey base. Prolonged cod residency in the northern Barents Sea is, therefore, not a certainty.
  相似文献   
20.
In a previous experiment we have documented that organisms adopt a risk-sensitive reproductive allocation when summer reproductive investment competes with survival in the coming winter ( Bårdsen et al. 2008 ). This tradeoff is present through autumn female body mass, which acts as an insurance against unpredictable winter environmental conditions. We tested this hypothesis experimentally on female reindeer experiencing stable and benign winter feeding conditions. Additional supplementary feeding and removal of newborns represented two sets of experimental manipulations. Females in the supplementary feeding group increased more in winter body mass relative to control females. This manipulation, however, did not have any effect on summer body mass development for neither females nor offspring, but we found a positive effect of feeding on offspring birth mass for smaller females. In contrast, offspring removal did have a positive effect on summer body mass development as females in this group were larger in the autumn relative to control females. In essence, we documented two immediate effects as: (1) supplementary feeding did have a positive effect on spring body mass for smaller females; and (2) offspring removal did increase the female summer somatic growth as this had a positive effect on female autumn body mass. Additionally, we tested for lagged effects, but we could not document any biologically significant effects of neither manipulation in the coming spring. The fact that we only found rather weak effects of both manipulations was as expected for risk sensitive individuals experiencing benign environmental conditions over many years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号