首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   6篇
  96篇
  2022年   2篇
  2021年   1篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2011年   6篇
  2010年   4篇
  2009年   1篇
  2008年   4篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   4篇
  1986年   4篇
  1983年   1篇
  1980年   2篇
  1976年   1篇
  1952年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
41.
The anterior cingulate cortex (ACC) plays an important role in higher brain functions including learning, memory, and persistent pain. Long-term potentiation of excitatory synaptic transmission has been observed in the ACC after digit amputation, which might contribute to plastic changes associated with the phantom pain. Here we report a long-lasting membrane potential depolarization in ACC neurons of adult rats after digit amputation in vivo. Shortly after digit amputation of the hind paw, the membrane potential of intracellularly recorded ACC neurons quickly depolarized from ~-70 mV to ~-15 mV and then slowly repolarized. The duration of this amputation-induced depolarization was about 40 min. Intracellular staining revealed that these neurons were pyramidal neurons in the ACC. The depolarization is activity-dependent, since peripheral application of lidocaine significantly reduced it. Furthermore, the depolarization was significantly reduced by a NMDA receptor antagonist MK-801. Our results provide direct in vivo electrophysiological evidence that ACC pyramidal cells undergo rapid and prolonged depolarization after digit amputation, and the amputation-induced depolarization in ACC neurons might be associated with the synaptic mechanisms for phantom pain.  相似文献   
42.
细胞周期与细胞凋亡   总被引:9,自引:0,他引:9  
从海洋生物胚胎细胞到哺乳动物的细胞周期,主要是在其细胞周期基因产物周期素及P34的调控下启动,运行和脱出周期的;某些原癌基因或抑癌基因的产物如p53,pRB也直接调控着细胞周期。  相似文献   
43.
44.
45.
Chronic neurodegeneration is a major worldwide health problem, and it has been suggested that systemic inflammation can accelerate the onset and progression of clinical symptoms. A possible explanation is that systemic inflammation "switches" the phenotype of microglia from a relatively benign to a highly aggressive and tissue-damaging phenotype. The current study investigated the molecular mechanism underlying this microglia phenotype "switching." We show in mice with chronic neurodegeneration (ME7 prion model) that there is increased expression of receptors that have a key role in macrophage activation and associated signaling pathways, including TREM-2, Siglec-F, CD200R, and FcγRs. Systemic inflammation induced by LPS further increased protein levels of the activating FcγRIII and FcγRIV, but not of other microglial receptors, including the inhibitory FcγRII. In addition to these changes in receptor expression, IgG levels in the brain parenchyma were increased during chronic neurodegeneration, and these IgG levels further increased after systemic inflammation. γ-Chain-deficient mice show modified proinflammatory cytokine expression in the brain after systemic inflammation. We conclude that systemic inflammation during chronic neurodegeneration increases the expression levels of activating FcγR on microglia and thereby lowers the signaling threshold for Ab-mediated cell activation. At the same time, IgG influx into the brain could provide a cross-linking ligand resulting in excessive microglia activation that is detrimental to neurons already under threat by misfolded protein.  相似文献   
46.
47.
Genistein, a phytoestrogen found in soybeans, is a powerful antioxidant. We evaluated the effects of genistein supplementation on performance, carcass characteristics, levels of malondialdehyde (MDA), homocysteine, vitamins C, E, A in Japanese quail (Coturnix coturnix japonica) exposed to high ambient temperature of 34°C. Two hundred and forty Japanese quails (10 d old) were randomly assigned to eight treatment groups consisting of 10 replicates of three birds. The birds were kept in an environmental controlled room either for 24 h/d at 22°C with (thermoneutral, TN groups) or for 16 h/d at 22°C and for 8 h/d (09.00 am to 05.00 pm) at 34°C (heat stress, HS groups). Birds were fed either a basal (control) diet (TN and HS) or the basal diet supplemented with 200, 400 or 800 mg of genistein per kg of diet. Heat exposure decreased birds' performance when basal diet was fed. Increase in feed intake and body weight, and improvement of feed efficiency and carcass traits were found in genistein-supplemented quails reared under heat stress conditions. Growth rate and feed efficiency improved in quails reared under thermo-neutral conditions as well. Concentration of serum vitamins C, E, and A increased in supplemented birds reared at high temperature, while non-significant changes occurred in TN groups. With genistein supplementation homocysteine levels in serum and MDA levels in serum and liver decreased in all birds of both TN and HS groups. Effects of genistein were relatively greater in heat-stressed quails than in quails kept under thermo-neutral conditions. Results of the present study suggest that supplementation with genistein can be considered to be protective by reducing the negative effects of oxidative stress induced by heat stress in quail.  相似文献   
48.
A high activatory/inhibitory FcγR binding ratio is critical for the activity of mAb such as rituximab and alemtuzumab that attack cancer cells directly and eliminate them by recruiting immune effectors. Optimal FcγR binding profiles of other anti-cancer mAb, such as immunostimulatory mAb that stimulate or block immune receptors, are less clear. In this study, we analyzed the importance of isotype and FcγR interactions in controlling the agonistic activity of the anti-mouse CD40 mAb 3/23. Mouse IgG1 (m1) and IgG2a (m2a) variants of the parental 3/23 (rat IgG2a) were engineered and used to promote humoral and cellular responses against OVA. The mouse IgG1 3/23 was highly agonistic and outperformed the parental Ab when promoting Ab (10-100-fold) and T cell (OTI and OTII) responses (2- to >10-fold). In contrast, m2a was almost completely inactive. Studies in FcγR knockout mice demonstrated a critical role for the inhibitory FcγRIIB in 3/23 activity, whereas activatory FcγR (FcγRI, -III, and -IV) was dispensable. In vitro experiments established that the stimulatory effect of FcγRIIB was mediated through Ab cross-linking delivered in trans between neighboring cells and did not require intracellular signaling. Intriguingly, activatory FcγR provided effective cross-linking of 3/23 m2a in vitro, suggesting the critical role of FcγRIIB in vivo reflects its cellular distribution and bioavailability as much as its affinity for a particular Ab isotype. In conclusion, we demonstrate an essential cross-linking role for the inhibitory FcγRIIB in anti-CD40 immunostimulatory activity and suggest that isotype will be an important issue when optimizing reagents for clinical use.  相似文献   
49.
A series of libraries were designed using the 1-(cyclopropylmethyl)-2-alkyl-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]pyridin-5-ium templates 2ab, and Sulfonamide derivatives 11an proved to be potent agonists of the CB2 receptor. Analysis of the Lipophilic Efficiency (LipE) of potent compounds provided new insight for the design of potent, metabolically stable CB2 agonists.  相似文献   
50.
Mutations in the mitochondrial protein kinase PINK1 are associated with autosomal recessive Parkinson disease (PD). We and other groups have reported that PINK1 activates Parkin E3 ligase activity both directly via phosphorylation of Parkin serine 65 (Ser65)—which lies within its ubiquitin‐like domain (Ubl)—and indirectly through phosphorylation of ubiquitin at Ser65. How Ser65‐phosphorylated ubiquitin (ubiquitinPhospho‐Ser65) contributes to Parkin activation is currently unknown. Here, we demonstrate that ubiquitinPhospho‐Ser65 binding to Parkin dramatically increases the rate and stoichiometry of Parkin phosphorylation at Ser65 by PINK1 in vitro. Analysis of the Parkin structure, corroborated by site‐directed mutagenesis, shows that the conserved His302 and Lys151 residues play a critical role in binding of ubiquitinPhospho‐Ser65, thereby promoting Parkin Ser65 phosphorylation and activation of its E3 ligase activity in vitro. Mutation of His302 markedly inhibits Parkin Ser65 phosphorylation at the mitochondria, which is associated with a marked reduction in its E3 ligase activity following mitochondrial depolarisation. We show that the binding of ubiquitinPhospho‐Ser65 to Parkin disrupts the interaction between the Ubl domain and C‐terminal region, thereby increasing the accessibility of Parkin Ser65. Finally, purified Parkin maximally phosphorylated at Ser65 in vitro cannot be further activated by the addition of ubiquitinPhospho‐Ser65. Our results thus suggest that a major role of ubiquitinPhospho‐Ser65 is to promote PINK1‐mediated phosphorylation of Parkin at Ser65, leading to maximal activation of Parkin E3 ligase activity. His302 and Lys151 are likely to line a phospho‐Ser65‐binding pocket on the surface of Parkin that is critical for the ubiquitinPhospho‐Ser65 interaction. This study provides new mechanistic insights into Parkin activation by ubiquitinPhospho‐Ser65, which could aid in the development of Parkin activators that mimic the effect of ubiquitinPhospho‐Ser65.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号